Benchmarking of cell type deconvolution pipelines for transcriptomics data

被引:221
|
作者
Cobos, Francisco Avila [1 ,2 ,3 ]
Alquicira-Hernandez, Jose [3 ,4 ]
Powell, Joseph E. [3 ,4 ]
Mestdagh, Pieter [1 ,2 ]
De Preter, Katleen [1 ,2 ]
机构
[1] Univ Ghent, Ctr Med Genet Ghent, Dept Biomol Med, Ghent, Belgium
[2] Canc Res Inst Ghent CRIG, Ghent, Belgium
[3] Garvan Inst Med Res, Garvan Weizmann Ctr Cellular Genom, Sydney, NSW, Australia
[4] Univ Queensland, Inst Mol Biosci, Brisbane, Qld, Australia
基金
欧盟地平线“2020”;
关键词
NORMALIZATION; SIGNATURES;
D O I
10.1038/s41467-020-19015-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many computational methods have been developed to infer cell type proportions from bulk transcriptomics data. However, an evaluation of the impact of data transformation, pre-processing, marker selection, cell type composition and choice of methodology on the deconvolution results is still lacking. Using five single-cell RNA-sequencing (scRNA-seq) datasets, we generate pseudo-bulk mixtures to evaluate the combined impact of these factors. Both bulk deconvolution methodologies and those that use scRNA-seq data as reference perform best when applied to data in linear scale and the choice of normalization has a dramatic impact on some, but not all methods. Overall, methods that use scRNA-seq data have comparable performance to the best performing bulk methods whereas semi-supervised approaches show higher error values. Moreover, failure to include cell types in the reference that are present in a mixture leads to substantially worse results, regardless of the previous choices. Altogether, we evaluate the combined impact of factors affecting the deconvolution task across different datasets and propose general guidelines to maximize its performance. Inferring cell type proportions from transcriptomics data is affected by data transformation, normalization, choice of method and the markers used. Here, the authors use single-cell RNAseq datasets to evaluate the impact of these factors and propose guidelines to maximise deconvolution performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Author Correction: Benchmarking of cell type deconvolution pipelines for transcriptomics data
    Francisco Avila Cobos
    José Alquicira-Hernandez
    Joseph E. Powell
    Pieter Mestdagh
    Katleen De Preter
    Nature Communications, 11
  • [2] Spotless, a reproducible pipeline for benchmarking cell type deconvolution in spatial transcriptomics
    Sang-aram, Chananchida
    Browaeys, Robin
    Seurinck, Ruth
    Saeys, Yvan
    ELIFE, 2024, 12
  • [3] Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
    Georgette Tanner
    David R. Westhead
    Alastair Droop
    Lucy F. Stead
    Nature Communications, 12
  • [4] Benchmarking pipelines for subclonal deconvolution of bulk tumour sequencing data
    Tanner, Georgette
    Westhead, David R.
    Droop, Alastair
    Stead, Lucy F.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [5] Benchmarking cell -type clustering methods for spatially resolved transcriptomics data
    Cheng, Andrew
    Hu, Guanyu
    Li, Wei Vivian
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)
  • [6] Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
    Bin Li
    Wen Zhang
    Chuang Guo
    Hao Xu
    Longfei Li
    Minghao Fang
    Yinlei Hu
    Xinye Zhang
    Xinfeng Yao
    Meifang Tang
    Ke Liu
    Xuetong Zhao
    Jun Lin
    Linzhao Cheng
    Falai Chen
    Tian Xue
    Kun Qu
    Nature Methods, 2022, 19 : 662 - 670
  • [7] Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution
    Li, Bin
    Zhang, Wen
    Guo, Chuang
    Xu, Hao
    Li, Longfei
    Fang, Minghao
    Hu, Yinlei
    Zhang, Xinye
    Yao, Xinfeng
    Tang, Meifang
    Liu, Ke
    Zhao, Xuetong
    Lin, Jun
    Cheng, Linzhao
    Chen, Falai
    Xue, Tian
    Qu, Kun
    NATURE METHODS, 2022, 19 (06) : 662 - +
  • [8] NLSDeconv: an efficient cell-type deconvolution method for spatial transcriptomics data
    Chen, Yunlu
    Ruan, Feng
    Wang, Ji-Ping
    BIOINFORMATICS, 2025, 41 (01)
  • [9] EnDecon: cell type deconvolution of spatially resolved transcriptomics data via ensemble learning
    Tu, Jia-Juan
    Li, Hui-Sheng
    Yan, Hong
    Zhang, Xiao-Fei
    BIOINFORMATICS, 2023, 39 (01)
  • [10] Spatially informed cell-type deconvolution for spatial transcriptomics
    Ma, Ying
    Zhou, Xiang
    NATURE BIOTECHNOLOGY, 2022, 40 (09) : 1349 - +