Asymptotic Estimates for the Best Uniform Approximations of Classes of Convolution of Periodic Functions of High Smoothness

被引:0
|
作者
Serdyuk A.S. [1 ]
Sokolenko I.V. [1 ]
机构
[1] Institute of Mathematics of the NAS of Ukraine, Kiev
基金
欧盟地平线“2020”;
关键词
(ψβ¯) -integral; asymptotic equality; Best approximation; Fourier sum; Kolmogorov–Nikol’skii problem; Weyl–Nagy class;
D O I
10.1007/s10958-020-05178-1
中图分类号
学科分类号
摘要
We find two-sided estimates for the best uniform approximations of classes of convolutions of 2-periodic functions from a unit ball of the space Lp,1 ≤ p < ∞; with fixed kernels such that the moduli of their Fourier coefficients satisfy the condition ∑k=n+1∞ψ(k)<ψ(n): In the case of ∑k=n+1∞ψ(k)=o(1)ψ(n); the obtained estimates become the asymptotic equalities. © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
引用
收藏
页码:526 / 540
页数:14
相关论文
共 50 条