An Exact Radon Formula for Lambertian Tomography

被引:0
|
作者
Jean-Baptiste Bellet
机构
[1] CNRS,Université de Lorraine
[2] IECL,undefined
来源
Journal of Mathematical Imaging and Vision | 2022年 / 64卷
关键词
Inverse optics; Radon transform; Lambertian diffusion; Tomography; 44A12; 78A46;
D O I
暂无
中图分类号
学科分类号
摘要
This paper, based on an extension of the Radon transform on distributions, is a mathematical contribution to the field of tomographic imaging in optics. Indeed, we tackle the reconstruction of a Lambertian convex reflector using tomography. In a bi-dimensional setup, we prove that the Lambert’s cosine law can be exactly inverted by an original Radon formula. The associated reconstruction contains the geometry and the physics of the problem: it is a Radon measure supported by the reflector, and its density is the inverse of the albedo. Surprisingly, the Radon transform from X-ray transmission tomography, extended on distributions, permits here to invert reflected radiances in optics.
引用
收藏
页码:939 / 947
页数:8
相关论文
共 50 条
  • [1] An Exact Radon Formula for Lambertian Tomography
    Bellet, Jean-Baptiste
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2022, 64 (09) : 939 - 947
  • [2] Thermoacoustic tomography and the circular radon transform: Exact inversion formula
    Haltmeier, Markus
    Scherzer, Otmar
    Burgholzer, Peter
    Nustero, Robert
    Paltauf, Guenther
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2007, 17 (04): : 635 - 655
  • [3] Exact reconstruction formula for the spherical mean Radon transform on ellipsoids
    Haltmeier, Markus
    INVERSE PROBLEMS, 2014, 30 (10)
  • [4] Photoacoustic tomography with line detector: Exact inversion formula
    Kim, Juyeon
    Moon, Sunghwan
    Hristova, Yulia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (02)
  • [5] An exact inversion formula for cone beam vector tomography
    Katsevich, Alexander
    Schuster, Thomas
    INVERSE PROBLEMS, 2013, 29 (06)
  • [6] Weighted Radon transforms for which Chang's approximate inversion formula is exact
    Novikov, R. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2011, 66 (02) : 442 - 443
  • [7] Exact reconstruction formula for diffuse optical tomography using simultaneous sparse representation
    Ye, Jong Chul
    Lee, Su Yeon
    Bresler, Yoram
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 1621 - +
  • [8] An improved exact inversion formula for solenoidal fields in cone beam vector tomography
    Katsevich, Alexander
    Rothermel, Dimitri
    Schuster, Thomas
    INVERSE PROBLEMS, 2017, 33 (06)
  • [9] Quasi-lambertian radiative transfer: exact analytic solutions
    Braun, Avi
    Gordon, Jeffrey M.
    NONIMAGING OPTICS: EFFICIENT DESIGN FOR ILLUMINATION AND SOLAR CONCENTRATION VII, 2010, 7785
  • [10] RADON INVERSION-FORMULA
    MONTALDI, E
    LETTERE AL NUOVO CIMENTO, 1979, 26 (18): : 593 - 598