The Unsteady Free Convection Boundary-Layer Flow Near a Stagnation Point in a Heat Generating Porous Medium with Modified Arrhenius Kinetics

被引:0
|
作者
J. H. Merkin
机构
[1] University of Leeds,Department of Applied Mathematics
来源
Transport in Porous Media | 2016年 / 113卷
关键词
Convective flow; Porous media; Stagnation-point flow; Local heat generation; Arrhenius kinetics;
D O I
暂无
中图分类号
学科分类号
摘要
The free convection boundary layer on an insulated wall formed by local internal heating through a modified form of Arrhenius kinetics is considered. It is shown to involve two dimensionless parameters, ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} the activation energy and q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0$$\end{document} the rate of local heating. Numerical solutions to the initial-value problem are obtained showing that, for relatively weak internal heating (small q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0$$\end{document}), a nontrivial flow arises at large times, whereas for larger local heating the solution becomes singular at a finite time. This behaviour is also seen to depend on the size of the initial input. The corresponding steady states, being the possible large time solutions to the initial-value problem, are also treated. These show the existence of a critical value q0,crit\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_{0,\mathrm{{crit}}}$$\end{document} of q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0$$\end{document}, dependent on ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}. These critical values determined numerically showing that there was a finite region of the ϵ∼q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon {\sim }q_0$$\end{document} parameter plane over which steady states cannot be found. Asymptotic forms for both ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document} and q0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q_0$$\end{document} being small and large are derived.
引用
收藏
页码:159 / 171
页数:12
相关论文
共 50 条