A Frobenius characterization of finite projective dimension over complete intersections

被引:0
|
作者
Claudia Miller
机构
[1] Department of Mathematics,
[2] University of Michigan,undefined
[3] Ann Arbor,undefined
[4] MI 48109,undefined
[5] USA (e-mail: clamille@math.lsa.umich.edu) ,undefined
来源
Mathematische Zeitschrift | 2000年 / 233卷
关键词
Asymptotic Behavior; Complete Intersection; Finite Length; Length Function; Projective Dimension;
D O I
暂无
中图分类号
学科分类号
摘要
Let M be a module of finite length over a complete intersection (R,m) of characteristic \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $p>0$\end{document}. We characterize the property that M has finite projective dimension in terms of the asymptotic behavior of a certain length function defined using the Frobenius functor. This may be viewed as the converse to a theorem of S. Dutta. As a corollary we get that, in a complete intersection (R,m), an m-primary ideal I has finite projective dimension if and only if its Hilbert-Kunz multiplicity equals the length of R/I.
引用
收藏
页码:127 / 136
页数:9
相关论文
共 50 条