Let M be a module of finite length over a complete intersection (R,m) of characteristic \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$p>0$\end{document}. We characterize the property that M has finite projective dimension in terms of the asymptotic behavior of a certain length function defined using the Frobenius functor. This may be viewed as the converse to a theorem of S. Dutta. As a corollary we get that, in a complete intersection (R,m), an m-primary ideal I has finite projective dimension if and only if its Hilbert-Kunz multiplicity equals the length of R/I.