On Heisenberg and local uncertainty principles for the multivariate continuous quaternion Shearlet transform

被引:0
|
作者
Brahim Kamel
Emna Tefjeni
Bochra Nefzi
机构
[1] University of Bisha,Department of Mathematics, College of Science
[2] University of Tunis El Manar,Faculty of Sciences of Tunis
[3] Al Jouf University,Department of Mathematics, College of Science and Arts
关键词
Quaternion Fourier transform; Shearlet; The continuous quaternion shearlet transform; Uncertainty principle; 42C40; 42A38; 42C15; 46S10; 44A35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we generalize the continuous quaternion shearlet transform on R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{2}$$\end{document} to R2d\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^{2d}$$\end{document}, called the multivariate two sided continuous quaternion shearlet transform. Using the two sided quaternion Fourier transform, we derive several important properties such as (reconstruction formula, plancherel’s formula, etc.). We present several example of the multivariate two sided continuous quaternion shearlet transform. We apply the multivariate two sided continuous quaternion shearlet transform properties and the two sided quaternion Fourier transform to establish the Heisenberg uncertainty principle. Last we study the multivariate two sided continuous quaternion shearlet transform on subset of finite measures.
引用
收藏
相关论文
共 50 条