Stability and time decay rates of the 2D magneto-micropolar equations with partial dissipation

被引:0
|
作者
Ming Li
机构
[1] Northwest University,Center for Nonlinear Studies, School of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2022年 / 73卷
关键词
2D magneto-micropolar equations; Partial dissipation; Stability; Decay estimate; 35Q35; 35B40; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the stability and decay estimates of solutions to the two-dimensional (2D) magneto-micropolar fluid equations with partial dissipation. We first establish the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-decay estimates for global solutions and their derivative with initial data in L1(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^1({\mathbb {R}}^2)$$\end{document}. Furthermore, we show the global stability of these solutions in Hs(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s(\mathbb {R}^2)$$\end{document}, and the decay rates of these global solutions and their higher derivatives when the initial data belongs to the negative Sobolev space H˙-l(R2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{H}^{-l}(\mathbb {R}^2)$$\end{document} (for each 0≤l<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le l < 1$$\end{document}).
引用
收藏
相关论文
共 50 条
  • [1] Stability and time decay rates of the 2D magneto-micropolar equations with partial dissipation
    Li, Ming
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [2] Stability and exponential decay for the 2D magneto-micropolar equations with partial dissipation
    Zhang, Yajie
    Wang, Weiwei
    APPLICABLE ANALYSIS, 2024, 103 (02) : 432 - 444
  • [3] The 2D magneto-micropolar equations with partial dissipation
    Regmi, Dipendra
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (12) : 4305 - 4317
  • [4] Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation
    Shang, Haifeng
    Gu, Chuanwei
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2019, 70 (03):
  • [5] Global regularity and decay estimates for 2D magneto-micropolar equations with partial dissipation
    Haifeng Shang
    Chuanwei Gu
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [6] Global Regularity for the 2D Magneto-Micropolar Equations with Partial Dissipation
    Regmi, Dipendra
    Wu, Jiahong
    JOURNAL OF MATHEMATICAL STUDY, 2016, 49 (02): : 169 - 194
  • [7] Optimal time decay rates of solutions for the 2D generalized magneto-micropolar equations
    Ye, Hailong
    Mao, Yiqiu
    Jia, Yan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 6336 - 6343
  • [8] Stability for a system of the 2D incompressible magneto-micropolar fluid equations with partial mixed dissipation
    Lin, Hongxia
    Liu, Sen
    Zhang, Heng
    Sun, Qing
    NONLINEARITY, 2024, 37 (05)
  • [9] Global regularity for the 2D magneto-micropolar equations with partial and fractional dissipation
    Yuan, Baoquan
    Qiao, Yuanyuan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (10) : 2345 - 2359
  • [10] Global Existence and Time-decay Rates of Solutions to 2D Magneto-micropolar Fluid Equations with Partial Viscosity
    Lu Cheng
    Wang Yuzhu
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2022, 35 (02): : 173 - 198