The Space of Pseudofunctions with Application to Disjointness Preserving Mappings

被引:0
|
作者
Rattan Lal
N. Shravan Kumar
机构
[1] University of Delhi,Department of Mathematics, Aryabhatta College
[2] Indian Institute of Technology Delhi,Department of Mathematics
来源
关键词
Orlicz space; Orlicz Figà–Talamanca Herz algebra; pseudofunctions; multipliers; disjointness preserving operators; Primary 43A62; 43A15; Secondary 43A30; 46J10;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a locally compact group. In this short note, we study the space of pseudofunctions, denoted PFΦ(G),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PF_\Phi (G),$$\end{document} associated with the Orlicz space LΦ(G),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\Phi (G),$$\end{document} where Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} is a Young function satisfying the Δ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta _2$$\end{document}-condition. We show that the dual of PFΦ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PF_\Phi (G)$$\end{document} is a commutative Banach algebra. We also study the space of multipliers from the Orlicz Figà–Talamanca Herz algebra AΦ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\Phi (G)$$\end{document} (introduced by the authors in Indag Math 30:340–354, 2019) to the dual of PMΨ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PM_\Psi (G)$$\end{document} and use it to show that the space of bounded multipliers of AΦ(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_\Phi (G)$$\end{document} is a dual space. Finally, we characterize the disjointness preserving mappings between two Orlicz Figà–Talamanca Herz algebras.
引用
收藏
相关论文
共 50 条