Studying wing downwash, which is caused by the wingtip effect, and its influence on horizontal tail is important for aircraft design. In this work, wing downwash was investigated using experimental and numerical methods. Sets of main wings and horizontal tails were fixed in a tunnel test chamber. For determining the wingtip effect and the wing downwash affecting the horizontal tail, experiments were performed, in which the pressure distributions near the main wingtip and on the upper and lower surfaces of the tail were measured. These experimental models were used in numerical calculations by the solving of differential equations for viscous flows and use of a singularity method for potential flows. The singularity method can be applied to determine the wing lift, as indicated by comparisons between the experimental and numerical results of the pressure distribution on the wing. Moreover, the wingtip and wing downwash effects influencing the horizontal tail should be determined with use of experimental and numerical methods that solve differential equations of viscous flow. In addition to the results regarding the pressure distributions near the main wing and on the horizontal tail, the longitudinal velocity, downwash velocity, and downwash angle distributions in the main wing wake were analyzed. We also investigated the kinetic parameters of the flow in mixed zones between the main wing downwash and the tail upwash.