We propose a general scheme for the search of a fundamental solution to the hypoelliptic diffusion equation in a “sufficiently good” sub-Riemannian manifold and the small-time asymptotics for the solution, which includes the generalized Fourier transform and the orbit method closely related to it, as well as an application of the perturbative method to the nilpotent approximation, and Trotter’s formula.
机构:
Univ Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
Univ Arkansas, Dept Math Sci, Fayetteville, AR 72701 USAUniv Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
Capogna, Luca
Citti, Giovanna
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento Matemat, I-40126 Bologna, ItalyUniv Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
Citti, Giovanna
Magnani, Cosimo Senni Guidotti
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento Matemat, I-40126 Bologna, ItalyUniv Minnesota, Inst Math & Applicat, Minneapolis, MN 55455 USA
机构:
CNRS, CMAP Ecole Polytech, Equipe INRIA GECO Saclay Ile de France, Paris, FranceCNRS, CMAP Ecole Polytech, Equipe INRIA GECO Saclay Ile de France, Paris, France
Barilari, Davide
Boscain, Ugo
论文数: 0引用数: 0
h-index: 0
机构:
CNRS, CMAP Ecole Polytech, Equipe INRIA GECO Saclay Ile de France, Paris, FranceCNRS, CMAP Ecole Polytech, Equipe INRIA GECO Saclay Ile de France, Paris, France
Boscain, Ugo
Neel, Robert W.
论文数: 0引用数: 0
h-index: 0
机构:
Lehigh Univ, Dept Math, Bethlehem, PA 18015 USACNRS, CMAP Ecole Polytech, Equipe INRIA GECO Saclay Ile de France, Paris, France