Responsive laminarin-boronic acid self-healing hydrogels for biomedical applications

被引:0
|
作者
Adérito J. R. Amaral
Vítor M. Gaspar
João F. Mano
机构
[1] University of Aveiro,CICECO–Aveiro Institute of Materials, Department of Chemistry
来源
Polymer Journal | 2020年 / 52卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The precise chemical modification of marine-derived biopolymers provides a unique opportunity for fabricating a toolbox of bioactive (bio)materials with modulated physicochemical and biological properties. Herein, the β-glucan laminarin was functionalized with phenylboronic acid (PBA) moieties that impart chemical reactivity toward diol-containing polymers via boronate esterification. The modification, which involved a two-pot reaction, was successfully confirmed by nuclear magnetic resonance spectroscopy. The resultant biopolymer readily established boronate ester-crosslinked hydrogels with poly(vinyl alcohol) (PVA) within seconds under physiological conditions. These hydrogels exhibited improved rheological properties, which were easily tunable, and revealed a rapid self-healing behavior upon rupture. Moreover, boronate ester bonds enabled the fabrication of reactive oxygen species-responsive and shear-thinning gels that can be administered in situ and respond to the oxidation state of the surrounding microenvironment. Importantly, due to the catalyst-free and mild-crosslinking conditions, the generated laminarin-PBA/PVA hydrogels did not show toxicity upon direct contact with preosteoblasts for up to 48 h, and thus constitute a promising platform for tissue engineering and drug delivery applications.
引用
收藏
页码:997 / 1006
页数:9
相关论文
共 50 条
  • [1] Responsive laminarin-boronic acid self-healing hydrogels for biomedical applications
    Amaral, Aderito J. R.
    Gaspar, Vitor M.
    Mano, Joao F.
    POLYMER JOURNAL, 2020, 52 (08) : 997 - 1006
  • [2] Synthesis and Biomedical Applications of Self-healing Hydrogels
    Liu, Yi
    Hsu, Shan-hui
    FRONTIERS IN CHEMISTRY, 2018, 6
  • [3] Advances in biomedical applications of self-healing hydrogels
    Rammal, Hassan
    GhavamiNejad, Amin
    Erdem, Ahmet
    Mbeleck, Rene
    Nematollahi, Mohammad
    Emir Diltemiz, Sibel
    Alem, Halima
    Darabi, Mohammad Ali
    Ertas, Yavuz Nuri
    Caterson, Edward J.
    Ashammakhi, Nureddin
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (12) : 4368 - 4400
  • [4] Designing self-healing hydrogels for biomedical applications
    Ding, Xiaoya
    Fan, Lu
    Wang, Li
    Zhou, Min
    Wang, Yongxiang
    Zhao, Yuanjin
    MATERIALS HORIZONS, 2023, 10 (10) : 3929 - 3947
  • [5] Characterization of self-healing hydrogels for biomedical applications
    Karvinen, Jennika
    Kellomaki, Minna
    EUROPEAN POLYMER JOURNAL, 2022, 181
  • [6] Self-Healing Hydrogels: Development, Biomedical Applications, and Challenges
    Rumon, Md Mahamudul Hasan
    Akib, Anwarul Azim
    Sultana, Fahmida
    Moniruzzaman, Md
    Niloy, Mahruba Sultana
    Shakil, Md Salman
    Roy, Chanchal Kumar
    POLYMERS, 2022, 14 (21)
  • [7] Recent development and biomedical applications of self-healing hydrogels
    Wang, Yinan
    Adokoh, Christian K.
    Narain, Ravin
    EXPERT OPINION ON DRUG DELIVERY, 2018, 15 (01) : 77 - 91
  • [8] Functionalization of hyaluronic acid for development of self-healing hydrogels for biomedical applications: A review
    Kikani, Twara
    Dave, Sanskruti
    Thakore, Sonal
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 242
  • [9] Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications
    Devi V. K, Anupama
    Shyam, Rohin
    Palaniappan, Arunkumar
    Jaiswal, Amit Kumar
    Oh, Tae-Hwan
    Nathanael, Arputharaj Joseph
    POLYMERS, 2021, 13 (21)
  • [10] Self-healing Hydrogels Based on Dynamic Chemistry and Their Biomedical Applications
    Zhang Yaling
    Yang Bin
    Xu Liangxin
    Zhang Xiaoyong
    Tao Lei
    Wei Yen
    ACTA CHIMICA SINICA, 2013, 71 (04) : 485 - 492