Spectral properties of the Schrödinger operator with δ-distribution

被引:0
|
作者
M. Nursultanov
机构
[1] Chalmers University of Technology,
[2] University of Gothenburg,undefined
来源
Mathematical Notes | 2016年 / 100卷
关键词
Schrödinger operator; semiboundedness below of the distribution functions of eigenvalues; discreteness of the spectrum of the Schrödinger operator; point interactions;
D O I
暂无
中图分类号
学科分类号
摘要
For the one-dimensional Schrödinger operator with δ-interactions, two-sided estimates of the distribution function of the eigenvalues and a criterion for the discreteness of the spectrum in terms of the Otelbaev function are obtained. A criterion for the resolvent of the Schrödinger operator to belong to the class Sp is established.
引用
收藏
页码:263 / 275
页数:12
相关论文
共 50 条
  • [1] Spectral surgery for the Schrödinger operator on graphs
    A. N. Bondarenko
    V. A. Dedok
    Doklady Mathematics, 2012, 85 : 367 - 368
  • [2] Spectral properties of the three-particle difference schrödinger operator
    S. N. Lakaev
    J. I. Abdullaev
    Functional Analysis and Its Applications, 1999, 33 : 151 - 153
  • [3] On spectral properties of the discrete Schrödinger operator with pure imaginary finite potential
    M. M. Faddeev
    Mathematical Notes, 2009, 85 : 437 - 440
  • [4] An inverse spectral problem for a fractional Schrödinger operator
    Mourad Choulli
    Archiv der Mathematik, 2023, 120 : 395 - 402
  • [5] Positive definite functions and spectral properties of the Schrödinger operator with point interactions
    N. I. Goloshchapova
    V. P. Zastavnyi
    M. M. Malamud
    Mathematical Notes, 2011, 90
  • [6] Spectral properties of a limit-periodic Schrödinger operator in dimension two
    Yulia Karpeshina
    Young-Ran Lee
    Journal d'Analyse Mathématique, 2013, 120 : 1 - 84
  • [7] A Spectral Multiplier Theorem Associated with a Schrödinger Operator
    Younghun Hong
    Journal of Fourier Analysis and Applications, 2016, 22 : 591 - 622
  • [8] Quantitative propagation of smallness and spectral estimates for the Schrödinger operator
    Le Balc'h, Kevin
    Martin, Jeremy
    JOURNAL OF SPECTRAL THEORY, 2025, 15 (01) : 245 - 278
  • [9] Inverse spectral problem for the Schrödinger operator on the square lattice
    Wu, Dongjie
    Yang, Chuan-Fu
    Bondarenko, Natalia Pavlovna
    INVERSE PROBLEMS, 2024, 40 (05)
  • [10] On the spectral estimates for the Schrödinger operator on ℤ d , d ≥ 3
    Rozenblum G.
    Solomyak M.
    Journal of Mathematical Sciences, 2009, 159 (2) : 241 - 263