Characterization for commutators of n-dimensional fractional Hardy operators

被引:0
|
作者
Zun-wei Fu
Zong-guang Liu
Shan-zhen Lu
Hong-bin Wang
机构
[1] Beijing Normal University,School of Mathematical Sciences
[2] Linyi Normal University,Department of Mathematics
[3] China University of Mining and Technology (Beijing),Department of Mathematics
来源
关键词
-dimensional fractional Hardy operator; commutator; CṀO function; homogeneous Herz space; 42B20; 42B35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it was proved that the commutator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_{\beta ,b} $$ \end{document} generated by an n-dimensional fractional Hardy operator and a locally integrable function b is bounded from Lp1 (ℝn) to Lp2 (ℝn) if and only if b is a CṀO(ℝn) function, where 1/p1 − 1/p2 = β/n, 1 < p1 < ∞, 0 ⩽ β < n. Furthermore, the characterization of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{H}_{\beta ,b} $$ \end{document} on the homogenous Herz space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\dot K_q^{\alpha ,p} $$ \end{document}(ℝn) was obtained.
引用
收藏
页码:1418 / 1426
页数:8
相关论文
共 50 条
  • [1] Characterization for commutators of n-dimensional fractional Hardy operators
    Zun-wei FU~(1
    ~2 Department of Mathematics
    ~3 Department of Mathematics
    ScienceinChina(SeriesA:Mathematics), 2007, (10) : 1418 - 1426
  • [2] Characterization for commutators of n-dimensional fractional Hardy operators
    Zun-wei Fu
    Zong-guang Liu
    Shan-zhen Luo
    Hong-bin Wang
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (10): : 1418 - 1426
  • [3] Lipschitz Estimates for Commutators of N-dimensional Fractional Hardy Operators
    Zheng Qing-yu and Fu Zun-wei (Department of Mathematics
    Communications in Mathematical Research, 2009, 25 (03) : 241 - 245
  • [4] Commutators of n-dimensional rough Hardy operators
    ZunWei Fu
    ShanZhen Lu
    FaYou Zhao
    Science China Mathematics, 2011, 54 : 95 - 104
  • [5] Commutators of n-dimensional rough Hardy operators
    FU ZunWei1
    2Department of Mathematics
    Science China(Mathematics), 2011, 54 (01) : 95 - 104
  • [6] Commutators of n-dimensional rough Hardy operators
    Fu ZunWei
    Lu ShanZhen
    Zhao FaYou
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (01) : 95 - 104
  • [7] Endpoint estimates for n-dimensional Hardy operators and their commutators
    Zhao FaYou
    Fu ZunWei
    Lu ShanZhen
    SCIENCE CHINA-MATHEMATICS, 2012, 55 (10) : 1977 - 1990
  • [8] Endpoint estimates for n-dimensional Hardy operators and their commutators
    ZHAO FaYou1
    2Department of Mathematics
    3School of Mathematical Sciences
    ScienceChina(Mathematics), 2012, 55 (10) : 1977 - 1990
  • [9] Endpoint estimates for n-dimensional Hardy operators and their commutators
    FaYou Zhao
    ZunWei Fu
    ShanZhen Lu
    Science China Mathematics, 2012, 55 : 1977 - 1990
  • [10] On n-dimensional fractional Hardy operators and commutators in variable Herz-type spaces
    Wang, Liwei
    Qu, Meng
    Tao, Wenyu
    KYOTO JOURNAL OF MATHEMATICS, 2019, 59 (02) : 419 - 439