In this paper, it was proved that the commutator \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{H}_{\beta ,b} $$
\end{document} generated by an n-dimensional fractional Hardy operator and a locally integrable function b is bounded from Lp1 (ℝn) to Lp2 (ℝn) if and only if b is a CṀO(ℝn) function, where 1/p1 − 1/p2 = β/n, 1 < p1 < ∞, 0 ⩽ β < n. Furthermore, the characterization of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\mathcal{H}_{\beta ,b} $$
\end{document} on the homogenous Herz space \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\dot K_q^{\alpha ,p} $$
\end{document}(ℝn) was obtained.