Representations of Regular Trees and Invariants of AR-Components for Generalized Kronecker Quivers

被引:0
|
作者
Daniel Bissinger
机构
[1] Christian-Albrechts-Universität zu Kiel,
来源
关键词
Kronecker algebra; Auslander-Reiten theory; Covering theory; 16G20; 16G60;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the generalized Kronecker algebra 𝒦r = kΓr with r ≥ 3 arrows. Given a regular component 𝒞 of the Auslander-Reiten quiver of 𝒦r, we show that the quasi-rank rk(𝒞) ∈ ℤ≤1 can be described almost exactly as the distance 𝒲(𝒞) ∈ ℕ0 between two non-intersecting cones in 𝒞, given by modules with the equal images and the equal kernels property; more precisley, we show that the two numbers are linked by the inequality −W(C)≤rk(C)≤−W(C)+3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\mathcal{W}(\mathcal{C}) \leq \text{rk}(\mathcal{C}) \leq - \mathcal{W}(\mathcal{C}) + 3.$$\end{document}Utilizing covering theory, we construct for each n ∈ ℕ0 a bijection φn between the field k and {𝒞∣𝒞 regular component, 𝒲(𝒞) = n}. As a consequence, we get new results about the number of regular components of a fixed quasi-rank.
引用
收藏
页码:331 / 358
页数:27
相关论文
共 4 条