On the behavior of solutions to the Cauchy problem for a degenerate parabolic equation with inhomogeneous density and a source

被引:0
|
作者
A. V. Martynenko
A. F. Tedeev
机构
[1] National Academy of Sciences of Ukraine,Institute of Applied Mathematics and Mechanics
关键词
equations with inhomogeneous density; degenerate parabolic equation; blowup solution; existence and nonexistence theorems;
D O I
暂无
中图分类号
学科分类号
摘要
The Cauchy problem for a degenerate parabolic equation with a source and inhomogeneous density of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \rho (x)\frac{{\partial u}} {{\partial t}} = div(u^{m - 1} \left| {Du} \right|^{\lambda - 1} Du) + \rho (x)u^p $$\end{document} is studied. Time global existence and nonexistence conditions are found for a solution to the Cauchy problem. Exact estimates of the solution are obtained in the case of global solvability.
引用
收藏
页码:1145 / 1160
页数:15
相关论文
共 50 条