On the coincidence of limit shapes for integer partitions and compositions, and a slicing of young diagrams

被引:0
|
作者
Yakubovich Yu.V. [1 ]
机构
[1] St. Petersburg Department, Steklov Mathematical Institute, St. Petersburg
基金
俄罗斯基础研究基金会;
关键词
Young Diagram; Uniform Measure; Limit Shape; Integer Partition; Equal Multiplicity;
D O I
10.1007/s10958-005-0427-1
中图分类号
学科分类号
摘要
We consider the slicing of Young diagrams into slices associated with summands that have equal multiplicities. It is shown that for the uniform measure on all partitions of an integer n, as well as for the uniform measure on partitions of an integer n into m summands with m ∼ Anα, α ≤ 1/2, all slices after rescaling concentrate around their limit shapes. The similar problem is solved for compositions of an integer n into m summands. These results explain why the limit shapes of partitions and compositions coincide in the case α < 1/2. Bibliography: 10 titles. © 2005 Springer Science+Business Media, Inc.
引用
收藏
页码:5569 / 5577
页数:8
相关论文
共 36 条
  • [1] Integer partitions and exclusion statistics: limit shapes and the largest parts of young diagrams
    Comtet, Alain
    Majumdar, Satya N.
    Ouvry, Stephane
    Sabhapandit, Sanjib
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [2] Limit shapes of Gibbs distributions on the set of integer partitions: The expansive case
    Erlihson, Michael M.
    Granovsky, Boris L.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (05): : 915 - 945
  • [3] Skew Howe duality and limit shapes of Young diagrams
    Nazarov, Anton
    Postnova, Olga
    Scrimshaw, Travis
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (01):
  • [4] Stochastic dynamics of growing Young diagrams and their limit shapes
    Krapivsky, P. L.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (01):
  • [5] On the dimension of downsets of integer partitions and compositions
    Engen, Michael
    Vatter, Vincent
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 74 : 98 - 111
  • [6] Limit shapes of young diagrams. Two elementary approaches
    Petrov F.
    Journal of Mathematical Sciences, 2010, 166 (1) : 63 - 74
  • [7] A central limit theorem for integer partitions
    Manfred Madritsch
    Stephan Wagner
    Monatshefte für Mathematik, 2010, 161 : 85 - 114
  • [8] A central limit theorem for integer partitions
    Madritsch, Manfred
    Wagner, Stephan
    MONATSHEFTE FUR MATHEMATIK, 2010, 161 (01): : 85 - 114
  • [9] Measures of distinctness for random partitions and compositions of an integer
    Hwang, HK
    Yeh, YN
    ADVANCES IN APPLIED MATHEMATICS, 1997, 19 (03) : 378 - 414
  • [10] Limit Shapes for Gibbs Ensembles of Partitions
    Fatkullin, Ibrahim
    Slastikov, Valeriy
    JOURNAL OF STATISTICAL PHYSICS, 2018, 172 (06) : 1545 - 1563