A novel brain partition highlights the modular skeleton shared by structure and function

被引:0
|
作者
Ibai Diez
Paolo Bonifazi
Iñaki Escudero
Beatriz Mateos
Miguel A. Muñoz
Sebastiano Stramaglia
Jesus M. Cortes
机构
[1] Biocruces Health Research Institute,Departamento de Electromagnetismo y Física de la Materia and Instituto Carlos I de Física Teórica y Computacional
[2] Cruces University Hospital,Dipartimento di Fisica
[3] School of Physics and Astronomy,undefined
[4] George S. Wise Faculty of Life Sciences,undefined
[5] Sagol School of Neuroscience,undefined
[6] Tel Aviv University,undefined
[7] Radiology Service,undefined
[8] Cruces University Hospital,undefined
[9] Universidad de Granada,undefined
[10] Universita degli Studi di Bari and INFN,undefined
[11] Ikerbasque: The Basque Foundation for Science,undefined
[12] Department of Cell Biology and Histology. University of the Basque Country,undefined
[13] BCAM - Basque Center for Applied Mathematics,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Elucidating the intricate relationship between brain structure and function, both in healthy and pathological conditions, is a key challenge for modern neuroscience. Recent progress in neuroimaging has helped advance our understanding of this important issue, with diffusion images providing information about structural connectivity (SC) and functional magnetic resonance imaging shedding light on resting state functional connectivity (rsFC). Here, we adopt a systems approach, relying on modular hierarchical clustering, to study together SC and rsFC datasets gathered independently from healthy human subjects. Our novel approach allows us to find a common skeleton shared by structure and function from which a new, optimal, brain partition can be extracted. We describe the emerging common structure-function modules (SFMs) in detail and compare them with commonly employed anatomical or functional parcellations. Our results underline the strong correspondence between brain structure and resting-state dynamics as well as the emerging coherent organization of the human brain.
引用
收藏
相关论文
共 50 条
  • [1] A novel brain partition highlights the modular skeleton shared by structure and function
    Diez, Ibai
    Bonifazi, Paolo
    Escudero, Iaki
    Mateos, Beatriz
    Munoz, Miguel A.
    Stramaglia, Sebastiano
    Cortes, Jesus M.
    SCIENTIFIC REPORTS, 2015, 5
  • [2] A modular invariant partition function for the fivebrane
    Dolan, L
    Nappi, CR
    NUCLEAR PHYSICS B, 1998, 530 (03) : 683 - 700
  • [3] A novel modular RBF neural network based on a brain-like partition method
    Jun-Fei Qiao
    Xi Meng
    Wen-Jing Li
    Bogdan M. Wilamowski
    Neural Computing and Applications, 2020, 32 : 899 - 911
  • [4] A novel modular RBF neural network based on a brain-like partition method
    Qiao, Jun-Fei
    Meng, Xi
    Li, Wen-Jing
    Wilamowski, Bogdan M.
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (03): : 899 - 911
  • [5] Modular invariant partition function of the Hubbard model
    Chang, Z
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1996, 18 (09): : 1087 - 1097
  • [6] Distribution of the coefficients of modular forms and the partition function
    Chen, Shi-Chao
    ARCHIV DER MATHEMATIK, 2012, 98 (04) : 307 - 315
  • [7] Distribution of the coefficients of modular forms and the partition function
    Shi-Chao Chen
    Archiv der Mathematik, 2012, 98 : 307 - 315
  • [8] MODULAR INVARIANCE OF THE THERMO-PARTITION FUNCTION AND GLOBAL PHASE-STRUCTURE OF THE HETEROTIC STRING
    OBRIEN, KH
    TAN, CI
    PHYSICAL REVIEW D, 1987, 36 (04): : 1184 - 1192
  • [9] Modular invariant partition function of critical dense polymers
    Morin-Duchesne, Alexi
    Pearce, Paul A.
    Rasmussen, Jorgen
    NUCLEAR PHYSICS B, 2013, 874 (01) : 312 - 357
  • [10] Finding an Hidden Common Partition in Duplex Structure-Function Brain Networks
    Carrino, Casimiro Pio
    Stramaglia, Sebastiano
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 539 - 539