Reflection positivity on real intervals

被引:0
|
作者
Palle E. T. Jorgensen
Karl-Hermann Neeb
Gestur Ólafsson
机构
[1] The University of Iowa,Department of Mathematics
[2] FAU Erlangen-Nürnberg,Department Mathematik
[3] Louisiana State University,Department of Mathematics
来源
Semigroup Forum | 2018年 / 96卷
关键词
Positive definite function; Negative definite function; Bernstein function; Reflection positive function; Reflection negative function;
D O I
暂无
中图分类号
学科分类号
摘要
We study functions f:(a,b)→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f : (a,b) \rightarrow {{\mathbb {R}}}$$\end{document} on open intervals in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}$$\end{document} with respect to various kinds of positive and negative definiteness conditions. We say that f is positive definite if the kernel f(x+y2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\big (\frac{x + y}{2}\big )$$\end{document} is positive definite. We call f negative definite if, for every h>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h > 0$$\end{document}, the function e-hf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^{-hf}$$\end{document} is positive definite. Our first main result is a Lévy–Khintchine formula (an integral representation) for negative definite functions on arbitrary intervals. For (a,b)=(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(a,b) = (0,\infty )$$\end{document} it generalizes classical results by Bernstein and Horn. On a symmetric interval (-a,a)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(-a,a)$$\end{document}, we call f reflection positive if it is positive definite and, in addition, the kernel f(x-y2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\big (\frac{x - y}{2}\big )$$\end{document} is positive definite. We likewise define reflection negative functions and obtain a Lévy–Khintchine formula for reflection negative functions on all of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}$$\end{document}. Finally, we obtain a characterization of germs of reflection negative functions on 0-neighborhoods in R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}$$\end{document}.
引用
收藏
页码:31 / 48
页数:17
相关论文
共 50 条
  • [1] Reflection positivity on real intervals
    Jorgensen, Palle E. T.
    Neeb, Karl-Hermann
    Olafsson, Gestur
    SEMIGROUP FORUM, 2018, 96 (01) : 31 - 48
  • [2] Reflection Positivity
    Le Jan, Yves
    MARKOV PATHS, LOOPS AND FIELDS: SAINT-FLOUR PROBABILITY SUMMER SCHOOL XXXVIII-2008, 2011, 2026 : 91 - 97
  • [3] KMS CONDITIONS, STANDARD REAL SUBSPACES AND REFLECTION POSITIVITY ON THE CIRCLE GROUP
    Neeb, Karl-Hermann
    Olafsson, Gestur
    PACIFIC JOURNAL OF MATHEMATICS, 2019, 299 (01) : 117 - 169
  • [4] POSITIVITY INTERVALS OF STABLE PROCESSES
    KESTEN, H
    JOURNAL OF MATHEMATICS AND MECHANICS, 1963, 12 (03): : 391 - 410
  • [5] Reflection Positivity for Majoranas
    Arthur Jaffe
    Fabio L. Pedrocchi
    Annales Henri Poincaré, 2015, 16 : 189 - 203
  • [6] Reflection Positivity for Parafermions
    Arthur Jaffe
    Fabio L. Pedrocchi
    Communications in Mathematical Physics, 2015, 337 : 455 - 472
  • [8] Reflection Positivity for Majoranas
    Jaffe, Arthur
    Pedrocchi, Fabio L.
    ANNALES HENRI POINCARE, 2015, 16 (01): : 189 - 203
  • [9] Reflection positivity on spheres
    Neeb, Karl-Hermann
    Olafsson, Gestur
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (01)
  • [10] Reflection positivity and monotonicity
    Jaffe, Arthur
    Ritter, Gordon
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)