On partially ordered real involutory Algebras

被引:0
|
作者
Albeverio S. [1 ,2 ,3 ,4 ,5 ]
Ayupov Sh.A. [6 ]
Dadakhodjayev R.A. [6 ]
机构
[1] Institut für Angewandte Mathematik, Universität Bonn, 53115 Bonn
[2] SFB 611, Universität Bonn, 53115 Bonn
[3] BiBoS, Universität Bielefeld, 33501 Bielefeld
[4] CERFIM, 6601 Locarno, Casella Postale 1132
[5] Acc. Arch., Università della Svizzera Italiana, 6850 Mendrisio
[6] Institute of Mathematics, Uzbekistan Academy of Science, 700143, Tashkent
来源
Acta Applicandae Mathematica | 2006年 / 94卷 / 3期
关键词
-anti-automorphism; Complexification; Discrete O [!sup]*[!/sup]-factors; Involutive; Locally measurable operators; Ordered algebras; Real O [!sup]*[!/sup]-algebras;
D O I
10.1007/s10440-006-9074-x
中图分类号
学科分类号
摘要
In this paper we study real O *-algebra, on the hermitian elements of which a partial order exists which is compatible with the algebraic structure. Such algebras occur in the axiomatic approach to the description of the space of random variables (observables) in quantum probability theory. We study the relations between these so called real O *-algebras and their complexification, and also their Jordan structure. Our main result is the theorem on the representation of abstract real O *-algebras as algebras of locally measurable (unbounded) operators affiliated with a real von Neumann algebra on a Hilbert space. © Springer Science + Business Media B.V. 2007.
引用
收藏
页码:195 / 214
页数:19
相关论文
共 50 条