Quantum spin systems and supersymmetric gauge theories. Part I

被引:0
|
作者
Norton Lee
Nikita Nekrasov
机构
[1] Stony Brook University,C.N. Yang Institute for Theoretical Physics
[2] Stony Brook University,Simons Center of Geometry and Physics
关键词
Bethe Ansatz; Lattice Integrable Models; Solitons Monopoles and Instantons; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
The relation between supersymmetric gauge theories in four dimensions and quantum spin systems is exploited to find an explicit formula for the Jost function of the N site sl\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{sl} $$\end{document}2X X X spin chain (for infinite dimensional complex spin representations), as well as the SLN Gaudin system, which reduces, in a limiting case, to that of the N-particle periodic Toda chain. Using the non-perturbative Dyson-Schwinger equations of the supersymmetric gauge theory we establish relations between the spin chain commuting Hamiltonians with the twisted chiral ring of gauge theory. Along the way we explore the chamber dependence of the supersymmetric partition function, also the expectation value of the surface defects, giving new evidence for the AGT conjecture.
引用
收藏
相关论文
共 50 条
  • [1] Quantum spin systems and supersymmetric gauge theories. Part I
    Lee, Norton
    Nekrasov, Nikita
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (03)
  • [2] Integrability in supersymmetric gauge theories. I
    Marshakov, AV
    PHYSICS OF PARTICLES AND NUCLEI, 1999, 30 (05) : 488 - 526
  • [3] Non-perturbative gauge dynamics in supersymmetric theories. A primer
    Shifman, M
    CONFINEMENT, DUALITY, AND NONPERTURBATIVE ASPECTS OF QCD, 1998, 368 : 477 - 544
  • [4] N=2 supersymmetric gauge theories and quantum integrable systems
    Luo, Yuan
    Tan, Meng-Chwan
    Yagi, Junya
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03):
  • [5] On integrable systems and supersymmetric gauge theories
    Marshakov, AV
    THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 112 (01) : 791 - 826
  • [6] On integrable systems and supersymmetric gauge theories
    A. V. Marshakov
    Theoretical and Mathematical Physics, 1997, 112 : 791 - 826
  • [7] Gravitational quantum foam and supersymmetric gauge theories
    Maeda, T
    Nakatsu, T
    Noma, Y
    Tamakoshi, T
    NUCLEAR PHYSICS B, 2006, 735 (1-3) : 96 - 126
  • [8] Janus and multifaced supersymmetric theories. II
    Kim, Chanju
    Koh, Eunkyung
    Lee, Ki-Myeong
    PHYSICAL REVIEW D, 2009, 79 (12):
  • [9] SUPERSYMMETRIC GAUGE-THEORIES IN QUANTUM-MECHANICS
    RITTENBERG, V
    YANKIELOWICZ, S
    ANNALS OF PHYSICS, 1985, 162 (02) : 273 - 302
  • [10] Supersymmetric gauge theories with an affine quantum moduli space
    Dotti, G
    Manohar, AV
    PHYSICAL REVIEW LETTERS, 1998, 80 (13) : 2758 - 2761