FSL: federated sequential learning-based cyberattack detection for Industrial Internet of Things

被引:0
|
作者
Fangyu Li
Junnuo Lin
Honggui Han
机构
[1] Beijing University of Technology,Faculty of Information Technology
来源
关键词
Federated learning; Sequential modeling; IIoT; Cyberattack detection;
D O I
10.1007/s44244-023-00006-2
中图分类号
学科分类号
摘要
Industrial Internet of Things (IIoT) brings revolutionary technical supports to modern industries. However, today’s IIoT still faces the challenges of modeling varying time-series in common data isolation while considering data security. To accurately characterize industrial dynamics, we propose a possible solution based on federated sequence learning (FSL) with cyber attack detection capabilities. Under a federated framework, FSL constructs a collaborative global model without violating local data integrity. Taking advantages of the locally sequential modeling, FSL captures the intrinsic industrial time-series responses. Furthermore, data heterogeneity among distributed clients is also considered, which is important to maintenance a robust but sensitive attack detection. Experiments on classic distributed datasets demonstrate that FSL is capable to accurately model data heterogeneity caused by data isolation and dynamics of time-series. Real IIoT attack detection experiments using a distributed testbed show that our FSL provides better detection performances for industrial time-series sensory data compared to existing methods. Therefore, the proposed attack detection approach FSL is promising in real IIoT scenarios in terms of feasibility, robustness and accuracy.
引用
收藏
相关论文
共 50 条
  • [1] A Federated Learning-Based Approach for Improving Intrusion Detection in Industrial Internet of Things Networks
    Rashid, Md Mamunur
    Khan, Shahriar Usman
    Eusufzai, Fariha
    Redwan, Md. Azharuddin
    Sabuj, Saifur Rahman
    Elsharief, Mahmoud
    NETWORK, 2023, 3 (01): : 158 - 179
  • [2] Federated learning-based intrusion detection system for Internet of Things
    Najet Hamdi
    International Journal of Information Security, 2023, 22 : 1937 - 1948
  • [3] Federated learning-based intrusion detection system for Internet of Things
    Hamdi, Najet
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY, 2023, 22 (06) : 1937 - 1948
  • [4] A federated learning-based zero trust intrusion detection system for Internet of Things
    Javeed, Danish
    Saeed, Muhammad Shahid
    Adil, Muhammad
    Kumar, Prabhat
    Jolfaei, Alireza
    AD HOC NETWORKS, 2024, 162
  • [5] Federated Semisupervised Learning for Attack Detection in Industrial Internet of Things
    Aouedi, Ons
    Piamrat, Kandaraj
    Muller, Guillaume
    Singh, Kamal
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) : 286 - 295
  • [6] Federated Cyberattack Detection for Internet of Things-Enabled Smart Cities
    Matheu, Sara N.
    Marmol, Enrique
    Hernandez-Ramos, Jose L.
    Skarmeta, Antonio
    Baldini, Gianmarco
    COMPUTER, 2022, 55 (12) : 65 - 73
  • [7] Federated Few-Shot Learning-Based Machinery Fault Diagnosis in the Industrial Internet of Things
    Liang, Yingying
    Zhao, Peng
    Wang, Yimeng
    APPLIED SCIENCES-BASEL, 2023, 13 (18):
  • [8] Intrusion detection for industrial internet of things based on federated learning and self-attention
    Wang J.
    Wang H.-L.
    Huang B.-W.
    Fu Q.
    Liu J.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (11): : 3229 - 3237
  • [9] Deep learning-based intrusion detection approach for securing industrial Internet of Things
    Soliman, Sahar
    Oudah, Wed
    Aljuhani, Ahamed
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 81 : 371 - 383
  • [10] Federated Bayesian optimization XGBoost model for cyberattack detection in internet of medical things
    Guembe, Blessing
    Misra, Sanjay
    Azeta, Ambrose
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2024, 193