Irreducible Morphisms and Locally Finite Dimensional Representations

被引:0
|
作者
Charles Paquette
机构
[1] University of Connecticut,Department of Mathematics
来源
关键词
Irreducible morphism; Almost split sequence; Krull-Schmidt category; Locally finite dimensional module; Strongly locally finite quiver; Auslander-Reiten quiver; 16G20; 16G70; 16D90;
D O I
暂无
中图分类号
学科分类号
摘要
Let 𝓐\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document} be a Hom-finite additive Krull-Schmidt k-category where k is an algebraically closed field. Let mod𝓐\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text {mod}\mathcal {A}$\end{document} denote the category of locally finite dimensional 𝓐\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A}$\end{document}-modules, that is, the category of covariant functors 𝓐→modk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {A} \to \text {mod}k$\end{document}. We prove that an irreducible monomorphism in mod𝓐\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text {mod}\mathcal {A}$\end{document} has a finitely generated cokernel, and that an irreducible epimorphism in mod𝓐\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text {mod}\mathcal {A}$\end{document} has a finitely co-generated kernel. Using this, we get that an almost split sequence in mod𝓐\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\text {mod}\mathcal {A}$\end{document} has to start with a finitely co-presented module and end with a finitely presented one. Finally, we apply our results to the study of rep(Q), the category of locally finite dimensional representations of a strongly locally finite quiver. We describe all possible shapes of the Auslander-Reiten quiver of rep(Q).
引用
收藏
页码:1239 / 1255
页数:16
相关论文
共 50 条