On the Algebra Generated by Volterra Integral Operators with Homogeneous Kernels and Continuous Coefficients

被引:0
|
作者
O. G. Avsyankin
G. A. Kamenskikh
机构
[1] Institute of Mathematics,Department of Differential and Integral Equations
[2] Mechanics and Computer Science,undefined
[3] Regional Mathematical Center,undefined
[4] Southern Federal University,undefined
来源
关键词
integral operator; homogeneous kernel; symbol; Noetherian property; index; Banach algebra; 517.9;
D O I
暂无
中图分类号
学科分类号
摘要
We consider Volterra multidimensional integral operators with continuous coefficients in Lebesgue spaces. The kernel of an integral operator is assumed homogeneous of degree \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ (-n) $\end{document}, invariant under the rotation group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ SO(n) $\end{document}, and satisfying some summability condition that ensures the boundedness of the operator. The main object of research is the noncommutative Banach algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{A} $\end{document} generated by all operators of the above type and the identity operator. To study \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{A} $\end{document}, we turn to the quotient algebra \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{A}/\mathfrak{T} $\end{document}, with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{T} $\end{document} the set of all compact operators. We prove that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{A}/\mathfrak{T} $\end{document} is commutative, which allows us to apply the general methods of commutative Banach algebras. In particular, we describe the space of maximal ideals of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{A}/\mathfrak{T} $\end{document} and find some invertibility criterion for the elements of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{A}/\mathfrak{T} $\end{document}. We then construct some symbolic calculus for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{A} $\end{document} on assigning to each operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{A} $\end{document} a continuous function, the symbol of the operator. Using the symbols, we obtain the necessary and sufficient conditions for the Noetherian property of an operator in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathfrak{A} $\end{document}, as well as an index formula.
引用
收藏
页码:955 / 962
页数:7
相关论文
共 50 条