Calculating the normalising constant of the Bingham distribution on the sphere using the holonomic gradient method

被引:0
|
作者
Tomonari Sei
Alfred Kume
机构
[1] Keio University,Department of Mathematics
[2] University of Kent,SMSAS
来源
Statistics and Computing | 2015年 / 25卷
关键词
Bingham distributions; Directional statistics; Holonomic functions;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we implement the holonomic gradient method to exactly compute the normalising constant of Bingham distributions. This idea is originally applied for general Fisher–Bingham distributions in Nakayama et al. (Adv. Appl. Math. 47:639–658, 2011). In this paper we explicitly apply this algorithm to show the exact calculation of the normalising constant; derive explicitly the Pfaffian system for this parametric case; implement the general approach for the maximum likelihood solution search and finally adjust the method for degenerate cases, namely when the parameter values have multiplicities.
引用
收藏
页码:321 / 332
页数:11
相关论文
共 50 条
  • [1] Calculating the normalising constant of the Bingham distribution on the sphere using the holonomic gradient method
    Sei, Tomonari
    Kume, Alfred
    STATISTICS AND COMPUTING, 2015, 25 (02) : 321 - 332
  • [2] On the derivatives of the normalising constant of the Bingham distribution
    Kume, A.
    Wood, Andrew T. A.
    STATISTICS & PROBABILITY LETTERS, 2007, 77 (08) : 832 - 837
  • [3] Holonomic gradient descent for the Fisher-Bingham distribution on the d-dimensional sphere
    Koyama, Tamio
    Nakayama, Hiromasa
    Nishiyama, Kenta
    Takayama, Nobuki
    COMPUTATIONAL STATISTICS, 2014, 29 (3-4) : 661 - 683
  • [4] Numerical Calculation of the Fisher-Bingham Integral by the Holonomic Gradient Method
    Koyama, Tamio
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 720 - 723
  • [5] On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method
    A. Kume
    T. Sei
    Statistics and Computing, 2018, 28 : 835 - 847
  • [6] On the exact maximum likelihood inference of Fisher-Bingham distributions using an adjusted holonomic gradient method
    Kume, A.
    Sei, T.
    STATISTICS AND COMPUTING, 2018, 28 (04) : 835 - 847
  • [7] The holonomic gradient method for the distribution function of the largest root of a Wishart matrix
    Hashiguchi, Hiroki
    Numata, Yasuhide
    Takayama, Nobuki
    Takemura, Akimichi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 117 : 296 - 312
  • [8] Distribution of the ratio of two Wishart matrices and cumulative probability evaluation by the holonomic gradient method
    Hashiguchi, Hiroki
    Takayama, Nobuki
    Takemura, Akimichi
    JOURNAL OF MULTIVARIATE ANALYSIS, 2018, 165 : 270 - 278
  • [9] MIMO Zero-Forcing Performance Evaluation Using the Holonomic Gradient Method
    Siriteanu, Constantin
    Takemura, Akimichi
    Kuriki, Satoshi
    Shin, Hyundong
    Koutschan, Christoph
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2015, 14 (04) : 2322 - 2335
  • [10] Bayesian Filtering for Nonlinear Stochastic Systems Using Holonomic Gradient Method with Integral Transform
    Iori, Tomoyuki
    Ohtsuka, Toshiyuki
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 5904 - 5910