A differential quadrature algorithm for nonlinear Schrödinger equation

被引:0
|
作者
Alper Korkmaz
İdris Dağ
机构
[1] Anadolu Guzel Sanatlar Lisesi,
[2] Osmangazi University,undefined
来源
Nonlinear Dynamics | 2009年 / 56卷
关键词
Differential quadrature; Interaction of solitons; Lagrange interpolation polynomials; Nonlinear Schrödinger equation; Solitary waves;
D O I
暂无
中图分类号
学科分类号
摘要
Numerical solutions of a nonlinear Schrödinger equation is obtained using the differential quadrature method based on polynomials for space discretization and Runge–Kutta of order four for time discretization. Five well-known test problems are studied to test the efficiency of the method. For the first two test problems, namely motion of single soliton and interaction of two solitons, numerical results are compared with earlier works. It is shown that results of other test problems agrees the theoretical results. The lowest two conserved quantities and their relative changes are computed for all test examples. In all cases, the differential quadrature Runge–Kutta combination generates numerical results with high accuracy.
引用
收藏
页码:69 / 83
页数:14
相关论文
共 50 条
  • [1] Numerical Study of Schrödinger Equation Using Differential Quadrature Method
    Bhatia R.
    Mittal R.C.
    International Journal of Applied and Computational Mathematics, 2018, 4 (1)
  • [2] A conservative Fourier pseudospectral algorithm for the nonlinear Schrdinger equation
    吕忠全
    张鲁明
    王雨顺
    Chinese Physics B, 2014, 23 (12) : 25 - 33
  • [3] A differential quadrature algorithm for nonlinear Schrodinger equation
    Korkmaz, Alper
    Dag, Idris
    NONLINEAR DYNAMICS, 2009, 56 (1-2) : 69 - 83
  • [4] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [5] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [6] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [7] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [8] A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrödinger equation
    Ali Başhan
    Yusuf Uçar
    N. Murat Yağmurlu
    Alaattin Esen
    The European Physical Journal Plus, 133
  • [9] The Quadrature Discretization Method (QDM) in the solution of the Schrödinger equation
    Heli Chen
    Bernie D. Shizgal
    Journal of Mathematical Chemistry, 1998, 24 : 321 - 343
  • [10] A differential quadrature algorithm for simulations of nonlinear Schrodinger equation
    Korkmaz, Alper
    Dag, Idris
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (09) : 2222 - 2234