On the Kauffman skein modules

被引:0
|
作者
Jianyuan K. Zhong
Bin Lu
机构
[1] Department of Mathematics & Statistics,
[2] Louisiana Tech University,undefined
[3] Ruston,undefined
[4] LA 71272,undefined
[5] USA. e-mail: kzhong@coes.latech.edu,undefined
[6] Department of Mathematics,undefined
[7] The University of Arizona,undefined
[8] Tucson,undefined
[9] AZ 85721,undefined
[10] USA. e-mail: binlu@math.arizona.edu,undefined
来源
manuscripta mathematica | 2002年 / 109卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
 Let k be a subring of the field of rational functions in α, s which contains α±1,s±1. Let M be a compact oriented 3-manifold, and let K(M) denote the Kauffman skein module of M over k. Then K(M) is the k-module freely generated by isotopy classes of framed links in M modulo the Kauffman skein relations. In the case of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, the field of rational functions in α, s, we give a basis for the Kauffman skein module of the solid torus and a basis for the relative Kauffman skein module of the solid torus with two points on the boundary. We then show that K(S1× S2 is freely generated by the empty link, i.e., \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}.
引用
收藏
页码:29 / 47
页数:18
相关论文
共 50 条