Dimensional Reduction Over the Quantum Sphere and Non-Abelian q-Vortices

被引:0
|
作者
Giovanni Landi
Richard J. Szabo
机构
[1] Università di Trieste,Dipartimento di Matematica e Informatica
[2] INFN,Department of Mathematics
[3] Heriot-Watt University,undefined
[4] Maxwell Institute for Mathematical Sciences,undefined
来源
关键词
Modulus Space; Line Bundle; Dimensional Reduction; Gauge Transformation; Quantum Group;
D O I
暂无
中图分类号
学科分类号
摘要
We extend equivariant dimensional reduction techniques to the case of quantum spaces which are the product of a Kähler manifold M with the quantum two-sphere. We work out the reduction of bundles which are equivariant under the natural action of the quantum group SUq(2), and also of invariant gauge connections on these bundles. The reduction of Yang–Mills gauge theory on the product space leads to a q-deformation of the usual quiver gauge theories on M. We formulate generalized instanton equations on the quantum space and show that they correspond to q-deformations of the usual holomorphic quiver chain vortex equations on M. We study some topological stability conditions for the existence of solutions to these equations, and demonstrate that the corresponding vacuum moduli spaces are generally better behaved than their undeformed counterparts, but much more constrained by the q-deformation. We work out several explicit examples, including new examples of non-abelian vortices on Riemann surfaces, and q-deformations of instantons whose moduli spaces admit the standard hyper-Kähler quotient construction.
引用
收藏
页码:365 / 413
页数:48
相关论文
共 50 条
  • [1] Dimensional Reduction Over the Quantum Sphere and Non-Abelian q-Vortices
    Landi, Giovanni
    Szabo, Richard J.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 308 (02) : 365 - 413
  • [2] Non-abelian symmetric critical gravitating vortices on a sphere
    Pingali, Vamsi Pritham
    MATHEMATISCHE ANNALEN, 2025, 391 (04) : 5211 - 5233
  • [3] NON-ABELIAN VORTICES AND NON-ABELIAN STATISTICS
    LO, HK
    PRESKILL, J
    PHYSICAL REVIEW D, 1993, 48 (10) : 4821 - 4834
  • [4] NON-ABELIAN ISOMETRIES AND DIMENSIONAL REDUCTION
    MANSOURI, F
    WITTEN, L
    PHYSICS LETTERS B, 1984, 140 (5-6) : 317 - 320
  • [5] Non-Abelian statistics of vortices with non-Abelian Dirac fermions
    Yasui, Shigehiro
    Hirono, Yuji
    Itakura, Kazunori
    Nitta, Muneto
    PHYSICAL REVIEW E, 2013, 87 (05):
  • [6] Twisted non-Abelian vortices
    Forgacs, Peter
    Lukacs, Arpad
    Schaposnik, Fidel A.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2016, 31 (28-29):
  • [7] Non-abelian vortices on the torus
    Sergio Lozano, Gustavo
    Marques, Diego
    Arturo Schaposnik, Fidel
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (09):
  • [8] Non-Abelian global vortices
    Eto, Minoru
    Nakano, Eiji
    Nitta, Muneto
    NUCLEAR PHYSICS B, 2009, 821 (1-2) : 129 - 150
  • [9] Dyonic non-Abelian vortices
    Collie, Benjamin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (08)
  • [10] Non-Abelian monopoles and vortices
    Bradlow, SB
    GarciaPrada, O
    GEOMETRY AND PHYSICS, 1997, 184 : 567 - 589