Hausdorff Dimension in Stochastic Dispersion

被引:0
|
作者
D. Dolgopyat
V. Kaloshin
L. Koralov
机构
[1] PennState University,Department of Mathematics
[2] MIT,Department of Mathematics
[3] Princeton University,Department of Mathematics
来源
关键词
Stochastic flows; Hausdorff dimension; Lyapunov exponents;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the evolution of a connected set in Euclidean space carried by a periodic incompressible stochastic flow. While for almost every realization of the random flow at time t most of the particles are at a distance of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\sqrt t$$ \end{document} away from the origin, there is an uncountable set of measure zero of points, which escape to infinity at the linear rate. In this paper we prove that this set of linear escape points has full Hausdorff dimension.
引用
收藏
页码:943 / 971
页数:28
相关论文
共 50 条