We compared the distribution and nutrient status of native haplotype F ofPhragmites australis along the freshwater to mesohaline tidal marsh gradient of the Rappahannock River, Virginia, for comparison with the nonnative, invasive haploty M. Using GIS analysis of aerial photography and GPS-based ground truthing, we identified 55 separate clones of native haplotype F comprising a total of 3.68 ha (range 0.002–0.734 ha), all found in tidal wetlands where surface water salinity was 0 psu. We identified 219 separate clones of the invasive haplotype M covering 68.3 ha along the same stretch of river (range 0.004–11.86 ha), found in wetlands where salinity ranged from 0 to 11 psu. From 15 separate clones for each haplotype, average carbon content in leaves of the native was significantly higher than the invasive (43.90±0.08% versus 42.82±0.15%, F1,28=20.938, p<0.01), and nitrogen content was significantly lower (2.22±0.03% versus 2.58±0.07%, F1,28=11.972, p<0.01). The average C:N:P ratio for leaf tissue was 1100∶48∶1 for haplotype F and 1084∶56∶1 for haplotype M. Relative to the native, the invasive haplotype forms larger stands distributed throughout a broader estuarine reach and incorporates more nitrogen in leaf tissue. From a management standpoint, nativePhragmites protection should focus on deterring nonnative haplotype invasion through the minimization of both adjacent upland disturbance and nutrient enrichment in tidal freshwater marshes.