On a certain martingale representation and the related infinite dimensional moment problem

被引:0
|
作者
Yuma Tamura
机构
[1] Ritsumeikan University,Graduate School of Science and Engineering
来源
Japan Journal of Industrial and Applied Mathematics | 2024年 / 41卷
关键词
Martingale representation theorem; Exponential martingale; Chaos expansion; Moment problem; 60G44;
D O I
暂无
中图分类号
学科分类号
摘要
It is well-known that any L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-martingale with respect to a Brownian filtration is represented by a stochastic integral with respect to the Brownian motion. The theorem can be proven based on the fact that linear combinations of exponential martingales (of a specific type) are dense in the mentioned set. In this paper, the necessary and sufficient conditions for expressing martingales as true identities rather than approximations are considered, which turns out to be an infinite dimensional moment problem. A typical moment problem is given as follows: for real sequences (μi)i=0∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (\mu _i)_{i=0}^\infty $$\end{document}, find the necessary and sufficient conditions for the existence of a distribution whose support is a subset of [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ [0,\infty ) $$\end{document} and the i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ i $$\end{document}-th moments is μi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mu _i $$\end{document}. This is a fundamental problem in probability theory or integral theory that was first proposed around 1894, but it is still being studied as of 2023. In this paper, we point out that this problem is related to the above problem through chaos expansion, and give a proof using a version of the moment problem.
引用
收藏
页码:609 / 615
页数:6
相关论文
共 50 条