Post-Newtonian Expansions for Perfect Fluids

被引:0
|
作者
Todd A. Oliynyk
机构
[1] Monash University,School of Mathematical Sciences
来源
关键词
Perfect Fluid; Weighted Sobolev Space; Newtonian Limit; Symmetric Hyperbolic System; High Order Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the existence of a large class of dynamical solutions to the Einstein-Euler equations that have a first post-Newtonian expansion. The results here are based on the elliptic-hyperbolic formulation of the Einstein-Euler equations used in [15], which contains a singular parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon = v_T/c}$$\end{document}, where vT is a characteristic velocity associated with the fluid and c is the speed of light. As in [15], energy estimates on weighted Sobolev spaces are used to analyze the behavior of solutions to the Einstein-Euler equations in the limit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon\searrow 0}$$\end{document}, and to demonstrate the validity of the first post-Newtonian expansion as an approximation.
引用
收藏
相关论文
共 50 条
  • [1] Post-Newtonian Expansions for Perfect Fluids
    Oliynyk, Todd A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (03) : 847 - 886
  • [2] Cosmological Post-Newtonian Expansions to Arbitrary Order
    Oliynyk, Todd A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 295 (02) : 431 - 463
  • [3] Cosmological Post-Newtonian Expansions to Arbitrary Order
    Todd A. Oliynyk
    Communications in Mathematical Physics, 2010, 295 : 431 - 463
  • [4] Toward a covariant framework for post-Newtonian expansions for radiative sources
    Hartong, Jelle
    Musaeus, Jorgen
    PHYSICAL REVIEW D, 2024, 109 (12)
  • [5] Post-Newtonian approximation for isolated systems calculated by matched asymptotic expansions
    Poujade, O
    Blanchet, L
    PHYSICAL REVIEW D, 2002, 65 (12):
  • [6] Newtonian, Post-Newtonian and Parametrized Post-Newtonian limits of f(R, G) gravity
    De Laurentis, Mariafelicia
    Lopez-Revelles, Antonio Jesus
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (10)
  • [7] Post-Newtonian Magnetohydrodynamics
    Nazari, Elham
    Roshan, Mahmood
    ASTROPHYSICAL JOURNAL, 2018, 868 (02):
  • [8] Post-Newtonian cosmology
    Szekeres, P
    Rainsford, T
    GENERAL RELATIVITY AND GRAVITATION, 2000, 32 (03) : 479 - 490
  • [9] Post-Newtonian Cosmology
    Peter Szekeres
    Tamath Rainsford
    General Relativity and Gravitation, 2000, 32 : 479 - 490
  • [10] High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions
    Boyle, Michael
    Brown, Duncan A.
    Kidder, Lawrence E.
    Mroue, Abdul H.
    Pfeiffer, Harald P.
    Scheel, Mark A.
    Cook, Gregory B.
    Teukolsky, Saul A.
    PHYSICAL REVIEW D, 2007, 76 (12):