A methodology for calibrating parameters in discrete element models based on machine learning surrogates

被引:0
|
作者
Joaquín Irazábal
Fernando Salazar
David J. Vicente
机构
[1] International Center for Numerical Methods in Engineering (CIMNE),
来源
关键词
Calibration bulk materials; Discrete element method; Machine learning; Random forest; Surrogate model;
D O I
暂无
中图分类号
学科分类号
摘要
The discrete element method (DEM) is well suited for calculating the behaviour of bulk materials. However, its application is limited because of the cumbersome calibration process required. Trial and error calibration can be useful for the computation of single outputs, but is unfeasible when the aim is reproducing more complex phenomena with high accuracy. This paper describes an iterative procedure based on machine learning to automatically calibrate the parameters of DEM models for reproducing the behaviour of bulk materials. The performance of the methodology is assessed by its application to the calibration of a DEM model to compute the stress–strain evolution of a cohesive material under uniaxial compression. In this case, a random forest model is used in conjunction with the iterative calibration algorithm proposed. The results of this study show that the algorithm is accurate and flexible for the calibration of material parameters.
引用
收藏
页码:1031 / 1047
页数:16
相关论文
共 50 条
  • [1] A methodology for calibrating parameters in discrete element models based on machine learning surrogates
    Irazabal, Joaquin
    Salazar, Fernando
    Vicente, David J.
    COMPUTATIONAL PARTICLE MECHANICS, 2023, 10 (05) : 1031 - 1047
  • [2] Discrete element simulations of granular pile formation Method for calibrating discrete element models
    Grima, Andrew Phillip
    Wypych, Peter Wilhelm
    ENGINEERING COMPUTATIONS, 2011, 28 (3-4) : 314 - 339
  • [3] Calibrating and testing the discrete element parameters for peanut seedling film
    Peng, Qiangji
    He, Xin
    Li, Guoming
    Yang, Rusha
    Wang, Xiaoyu
    Zhang, Chunyan
    Zhang, Ningning
    Kang, Jianming
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2024, 17 (05) : 65 - 72
  • [4] Calibrating and simulating contact parameters of the discrete element for apple particles
    Zhang H.
    Han X.
    Yang H.
    Chen X.
    Zhao G.
    Sun J.
    Sun L.
    Wang J.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2024, 40 (12): : 66 - 76
  • [5] CALIBRATION AND TESTING OF SALINE SOIL PARAMETERS BASED ON EDEM DISCRETE ELEMENT METHODOLOGY
    He, Xiaoning
    Ma, Shikuan
    Liu, Zhixin
    Wang, Dongwei
    Shang, Shuqi
    Li, Guanghui
    Li, Hongxiu
    INMATEH-AGRICULTURAL ENGINEERING, 2024, 73 (02): : 822 - 833
  • [6] Task-oriented machine learning surrogates for tipping points of agent-based models
    Fabiani, Gianluca
    Evangelou, Nikolaos
    Cui, Tianqi
    Bello-Rivas, Juan M.
    Martin-Linares, Cristina P.
    Siettos, Constantinos
    Kevrekidis, Ioannis G.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [7] Bridging the gap between mechanistic biological models and machine learning surrogates
    Gherman, Ioana M.
    Abdallah, Zahraa S.
    Pang, Wei
    Gorochowski, Thomas E.
    Grierson, Claire S.
    Marucci, Lucia
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (04)
  • [8] A calibration methodology to obtain material parameters for the representation of fracture mechanics based on discrete element simulations
    Behraftar, S.
    Torres, S. A. Galindo
    Scheuermann, A.
    Williams, D. J.
    Marques, E. A. G.
    Avarzaman, H. Janjani
    COMPUTERS AND GEOTECHNICS, 2017, 81 : 274 - 283
  • [9] Development of a methodology for prediction and calibration of parameters of DEM simulations based on machine learning
    Bouassale, Nasr-Eddine
    Sallaou, Mohamed
    Aittaleb, Abdelmajid
    MECHANICS RESEARCH COMMUNICATIONS, 2024, 141
  • [10] Discrete element simulation of the charge in the hopper of a blast furnace, calibrating the parameters through an optimization algorithm
    Gabriele Degrassi
    Lucia Parussini
    Marco Boscolo
    Nicola Petronelli
    Vincenzo Dimastromatteo
    SN Applied Sciences, 2021, 3