Aerodynamic Design of Airfoil Shape for Gust Generation in a Transonic Wind Tunnel

被引:0
|
作者
Nunzio Natale
Serena Russo
Sylvie Dequand
Arnaud Lepage
Nicola Paletta
机构
[1] Dream Innovation Srl,ONERA—The French Aerospace Lab
[2] Centre de Châtillon 29,undefined
[3] IBK Innovation GmbH Co. KG,undefined
来源
Aerotecnica Missili & Spazio | 2021年 / 100卷 / 4期
关键词
Computational fluid dynamics (CFD); RANS; Gust generator; Transonic wind tunnel;
D O I
10.1007/s42496-021-00098-y
中图分类号
学科分类号
摘要
This article presents the aerodynamic design of the airfoil of the gust generator system being developed in the GUDGET project and conceived to generate high-amplitude gusts in a transonic wind tunnel. The system is made of vanes creating a flow deviation in turn by flapping around a rotational axis or by blowing air though a suitable sonic jet located close to the vane trailing edge. The airfoil shape optimization has been carried out using a design of experiment technique (DOE) and response surface optimization along with URANS CFD. The computational model has been preliminarily validated using data provided by ONERA for the baseline design at a lower Mach number (M=0.73\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}=0.73$$\end{document}) and then compared with the one actually required by GUDGET in the test chamber (M=0.82\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {M}=0.82$$\end{document}). All the cases have been optimized at a frequency of 40 Hz and then investigated at a frequency of 80Hz.
引用
收藏
页码:345 / 362
页数:17
相关论文
共 50 条
  • [1] Optimization aerodynamic design for transonic airfoil
    Beijing Univ of Aeronautics and, Astronautics, Beijing, China
    Beijing Hangkong Hangtian Daxue Xuebao, 3 (304-307):
  • [2] COMPUTATIONAL TRANSONIC AIRFOIL DESIGN IN FREE AIR AND A WIND-TUNNEL
    SHANKAR, V
    MALMUTH, ND
    COLE, JD
    ASTRONAUTICS & AERONAUTICS, 1978, 16 (11): : B40 - B40
  • [3] Rotor airfoil aerodynamic design method and wind tunnel test verification
    Weiguo ZHANG
    Junfeng SUN
    Liangquan WANG
    Jie WU
    Long HE
    Chinese Journal of Aeronautics , 2020, (08) : 2123 - 2132
  • [4] Rotor airfoil aerodynamic design method and wind tunnel test verification
    Weiguo ZHANG
    Junfeng SUN
    Liangquan WANG
    Jie WU
    Long HE
    Chinese Journal of Aeronautics, 2020, 33 (08) : 2123 - 2132
  • [5] Rotor airfoil aerodynamic design method and wind tunnel test verification
    Zhang, Weiguo
    Sun, Junfeng
    Wang, Liangquan
    Wu, Jie
    He, Long
    CHINESE JOURNAL OF AERONAUTICS, 2020, 33 (08) : 2123 - 2132
  • [6] Aerodynamic Optimization Design of Airfoil Shape Using Entropy Generation as an Objective
    Wang, Wei
    Wang, Jun
    Yang, Xiao-Pei
    Ding, Yan-Yan
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2019, 11 (02)
  • [7] EFFECT OF AIRFOIL SHAPE AND TURNING ANGLE ON TURBINE AIRFOIL AERODYNAMIC PERFORMANCE AT TRANSONIC CONDITIONS
    Abraham, Santosh
    Panchal, Kapil
    Ekkad, Srinath V.
    Ng, Wing
    Brown, Barry J.
    Malandra, Anthony
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2011, VOL 6, PTS A AND B, 2012, : 1199 - 1208
  • [8] THE AERODYNAMIC FORCE ON AN AIRFOIL IN A MOVING GUST
    MILES, JW
    JOURNAL OF THE AERONAUTICAL SCIENCES, 1956, 23 (11): : 1044 - 1050
  • [9] Numerical modelling of transonic flow past an airfoil in a wind tunnel
    Velichko, SA
    Lifshits, YB
    Neiland, VM
    Solntsev, IA
    Sorokin, AM
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1995, 35 (10) : 1221 - 1235
  • [10] EFFECT OF AIRFOIL CONCAVITY ON AERODYNAMIC NOISE OF WIND TURBINES UNDER GUST INFLOW
    Xing J.
    Ma J.
    Su H.
    Zhang L.
    Zhang P.
    Yu H.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2023, 44 (04): : 156 - 162