Lower Bounds on Blow-up of Solutions for Magneto-Micropolar Fluid Systems in Homogeneous Sobolev Spaces

被引:0
|
作者
Pablo Braz e Silva
Wilberclay G. Melo
Paulo R. Zingano
机构
[1] Universidade Federal de Pernambuco,Departamento de Matemática
[2] Universidade Federal de Sergipe,Departamento de Matemática
[3] Universidade Federal do Rio Grande do Sul,Departamento de Matemática Pura e Aplicada
来源
关键词
Magneto-micropolar fluid system; Blow-up criterion; Homogeneous Sobolev spaces; 35Q35; 74A35; 76D05; 76W05;
D O I
暂无
中图分类号
学科分类号
摘要
We obtain lower bounds on blow-up of solutions for the 3D magneto-micropolar equations. More precisely, we establish some estimates for the solution (u,w,b)(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbf{u},\mathbf{w},\mathbf{b}) (t)$\end{document} in its maximal interval [0,T∗)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[0,T^{*})$\end{document} provided that T∗<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$T^{*}<\infty$\end{document}, which show for δ∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta\in(0,1)$\end{document} that ∥(u,w,b)(t)∥H˙s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|(\mathbf{u},\mathbf{w},\mathbf{b})(t)\|_{\dot{H}^{s}}$\end{document} is at least of the order (T∗−t)−(δs)/(1+2δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(T^{*}-t)^{-(\delta s)/(1+2\delta)}$\end{document} for s≥1/2+δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\geq1/2+\delta$\end{document}. In particular, by choosing a suitable δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\delta$\end{document}, one concludes that ∥(u,w,b)(t)∥H˙s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|(\mathbf{u},\mathbf{w},\mathbf{b})(t)\|_{\dot{H}^{s}}$\end{document} is at least of the order (T∗−t)−s/4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(T^{*}-t)^{-s/4}$\end{document}, and (T∗−t)1/4−s/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(T^{*}-t)^{1/4-s/2}$\end{document} for s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s\geq1$\end{document}, and 1/2<s<3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/2< s<3/2$\end{document}, respectively. We also show that (T∗−t)−s/3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(T^{*}-t)^{-s/3}$\end{document} is a lower rate for ∥(u,w,b)(t)∥H˙s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\|(\mathbf{u},\mathbf{w},\mathbf{b})(t)\|_{\dot{H}^{s}}$\end{document} if s>3/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$s>3/2$\end{document}.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 50 条