Induction rules in bounded arithmetic

被引:0
|
作者
Emil Jeřábek
机构
[1] The Czech Academy of Sciences,Institute of Mathematics
来源
关键词
Bounded arithmetic; Parameter-free induction; Induction rule; Partial conservativity; Reflection principle; 03F30; 03F20;
D O I
暂无
中图分类号
学科分类号
摘要
We study variants of Buss’s theories of bounded arithmetic axiomatized by induction schemes disallowing the use of parameters, and closely related induction inference rules. We put particular emphasis on Π^ib\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hat{\varPi }^{b}_i$$\end{document} induction schemes, which were so far neglected in the literature. We present inclusions and conservation results between the systems (including a witnessing theorem for T2i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^i_2$$\end{document} and S2i\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^i_2$$\end{document} of a new form), results on numbers of instances of the axioms or rules, connections to reflection principles for quantified propositional calculi, and separations between the systems.
引用
收藏
页码:461 / 501
页数:40
相关论文
共 50 条