On the existence of real R-matrices for virtual link invariants

被引:0
|
作者
Guus Regts
Alexander Schrijver
Bart Sevenster
机构
[1] University of Amsterdam,
关键词
Partition Function; Disjoint Union; Symmetric Group; Invariant Theory; Positive Semidefinite;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the virtual link invariants that can be described as partition function of a real-valued R-matrix, by being weakly reflection positive. Weak reflection positivity is defined in terms of joining virtual link diagrams, which is a specialization of joining virtual link diagram tangles. Basic techniques are the first fundamental theorem of invariant theory, the Hanlon–Wales theorem on the decomposition of Brauer algebras, and the Procesi–Schwarz theorem on inequalities for closed orbits.
引用
收藏
页码:435 / 443
页数:8
相关论文
共 50 条
  • [1] On the existence of real R-matrices for virtual link invariants
    Regts, Guus
    Schrijver, Alexander
    Sevenster, Bart
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2017, 87 (02): : 435 - 443
  • [2] OPERATOR INVARIANTS OF TANGLES, AND R-MATRICES
    TURAEV, VG
    MATHEMATICS OF THE USSR-IZVESTIYA, 1989, 53 (05): : 411 - 444
  • [3] Glueing operation for R-matrices, quantum groups and link-invariants of Hecke type
    Majid, S
    Markl, M
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 : 139 - 166
  • [4] Random walk invariants of string links from R-matrices
    Kerler, Thomas
    Wang, Yilong
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2016, 16 (01): : 569 - 596
  • [5] Cyclicity and R-matrices
    David Hernandez
    Selecta Mathematica, 2019, 25
  • [6] Plabic R-Matrices
    Chepuri, Sunita
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2020, 56 (02) : 281 - 351
  • [7] Cyclicity and R-matrices
    Hernandez, David
    SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (02):
  • [8] Metaplectic R-matrices
    Isaev A.P.
    Karakhanyan D.
    Kirschner R.
    Physics of Particles and Nuclei Letters, 2017, 14 (2) : 360 - 364
  • [9] R-matrices in rime
    Ogievetsky, Oleg
    Popov, Todor
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 14 (02) : 439 - 505
  • [10] Two-dimensional R-matrices - Descendants of three-dimensional R-matrices
    Sergeev, SM
    MODERN PHYSICS LETTERS A, 1997, 12 (19) : 1393 - 1410