Nonlinear vibrations of a beam with time-varying rigidity and mass

被引:0
|
作者
A. K. Abramian
W. T. van Horssen
S. A. Vakulenko
机构
[1] Russian Academy of Sciences,Institute of Problems in Mechanical Engineering
[2] Delft University of Technology,Department of Applied Mathematical Analysis, Faculty EEMCS
来源
Nonlinear Dynamics | 2013年 / 71卷
关键词
Time-varying mass; Beam; Internal resonances;
D O I
暂无
中图分类号
学科分类号
摘要
We consider asymptotic solutions for nonlinear beams that can be described by a fourth order hyperbolic equation with an integral nonlinearity and some space and time dependent coefficients. These coefficients can describe varying mass and rigidity perturbations. A two-time scales perturbation method reduces this complicated equation to an infinite-dimensional Hamiltonian system for the Fourier modes. An analysis of this system shows that the corresponding dynamics is quasi-periodic and periodic in time if the coefficients are constant. For non-constant coefficients the dynamics changes significantly. For some special non-constant coefficients the Hamiltonian dynamics can be simplified. We obtain a simpler finite-dimensional system. Numerical simulations show existence of new interesting dynamical effects due to resonances between some Fourier modes. These resonances can lead to large oscillations, even for small nonlinearities. The phase portraits which correspond to these resonance cases will also be presented.
引用
收藏
页码:291 / 312
页数:21
相关论文
共 50 条
  • [1] Nonlinear vibrations of a beam with time-varying rigidity and mass
    Abramian, A. K.
    van Horssen, W. T.
    Vakulenko, S. A.
    NONLINEAR DYNAMICS, 2013, 71 (1-2) : 291 - 312
  • [2] On oscillations of a beam with a small rigidity and a time-varying mass
    A. K. Abramian
    W. T. van Horssen
    S. A. Vakulenko
    Nonlinear Dynamics, 2014, 78 : 449 - 459
  • [3] On oscillations of a beam with a small rigidity and a time-varying mass
    Abramian, A. K.
    van Horssen, W. T.
    Vakulenko, S. A.
    NONLINEAR DYNAMICS, 2014, 78 (01) : 449 - 459
  • [4] Oscillations of a beam with a time-varying mass
    Abramyan, A. K.
    Vakulenko, S. A.
    NONLINEAR DYNAMICS, 2011, 63 (1-2) : 135 - 147
  • [5] Oscillations of a beam with a time-varying mass
    A. K. Abramyan
    S. A. Vakulenko
    Nonlinear Dynamics, 2011, 63 : 135 - 147
  • [6] On the forced vibrations of an oscillator with a periodically time-varying mass
    van Horssen, W. T.
    Pischanskyy, O. V.
    Dubbeldam, J. L. A.
    JOURNAL OF SOUND AND VIBRATION, 2010, 329 (06) : 721 - 732
  • [7] On the free vibrations of an oscillator with a periodically time-varying mass
    van Horssen, W. T.
    Abramian, A. K.
    Hartono
    JOURNAL OF SOUND AND VIBRATION, 2006, 298 (4-5) : 1166 - 1172
  • [8] Limit Cycle on the Forced Vibrations Oscillator with a Time-Varying Mass
    Hartono, N.
    Binatari, N.
    Saptaningtyas, F. Y.
    Emut
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 2024
  • [9] VIBRATIONS OF STRING WITH TIME-VARYING LENGTH
    NAKAGAWA, K
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1979, 22 (172): : 1507 - 1507
  • [10] VIBRATIONS OF STRING WITH TIME-VARYING LENGTH
    KOTERA, T
    BULLETIN OF THE JSME-JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1978, 21 (160): : 1469 - 1474