Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices

被引:0
|
作者
T. Ibn-Mohammed
K. B. Mustapha
M. Abdulkareem
A. Ucles Fuensanta
V. Pecunia
C. E. J. Dancer
机构
[1] WMG,Department of Mechanical, Materials and Manufacturing Engineering
[2] The University of Warwick,School of Sustainable Energy Engineering
[3] University of Nottingham (Malaysia Campus),undefined
[4] William Harvey Research Institute,undefined
[5] Queen Mary University,undefined
[6] Simon Fraser University,undefined
关键词
Artificial intelligence; Machine learning; Life cycle assessment; Environmental impact; Functional ceramic; Critical materials;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:795 / 811
页数:16
相关论文
共 17 条
  • [1] Toward artificial intelligence and machine learning-enabled frameworks for improved predictions of lifecycle environmental impacts of functional materials and devices
    Ibn-Mohammed, T.
    Mustapha, K. B.
    Abdulkareem, M.
    Fuensanta, A. Ucles
    Pecunia, V.
    Dancer, C. E. J.
    MRS COMMUNICATIONS, 2023, 13 (05) : 795 - 811
  • [2] Transparency of artificial intelligence/machine learning-enabled medical devices
    Shick, Aubrey A.
    Webber, Christina M.
    Kiarashi, Nooshin
    Weinberg, Jessica P.
    Deoras, Aneesh
    Petrick, Nicholas
    Saha, Anindita
    Diamond, Matthew C.
    NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [3] Transparency of artificial intelligence/machine learning-enabled medical devices
    Aubrey A. Shick
    Christina M. Webber
    Nooshin Kiarashi
    Jessica P. Weinberg
    Aneesh Deoras
    Nicholas Petrick
    Anindita Saha
    Matthew C. Diamond
    npj Digital Medicine, 7
  • [4] Regulating Artificial Intelligence and Machine Learning-Enabled Medical Devices in Europe and the United Kingdom
    Li, Phoebe
    Williams, Robin
    Gilbert, Stephen
    Anderson, Stuart
    LAW TECHNOLOGY AND HUMANS, 2023, 5 (02): : 94 - 113
  • [5] US FDA Approval of Pediatric Artificial Intelligence and Machine Learning-Enabled Medical Devices
    Brewster, Ryan C. L.
    Nagy, Matthew
    Wunnava, Susmitha
    Bourgeois, Florence T.
    JAMA PEDIATRICS, 2025, 179 (02) : 212 - 214
  • [6] Landscape of Oncology-Specific, FDA-Approved, Artificial Intelligence and Machine Learning-Enabled Medical Devices
    Zhu, S.
    Gilbert, M.
    Chetty, I. J.
    Siddiqui, F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E340 - E340
  • [7] Toward Design of Internet of Things and Machine Learning-Enabled Frameworks for Analysis and Prediction of Water Quality
    Rahu, Mushtaque Ahmed
    Chandio, Abdul Fattah
    Aurangzeb, Khursheed
    Karim, Sarang
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    IEEE ACCESS, 2023, 11 : 101055 - 101086
  • [8] The 2021 landscape of FDA-approved artificial intelligence/machine learning-enabled medical devices: An analysis of the characteristics and intended use
    Zhu S.
    Gilbert M.
    Chetty I.
    Siddiqui F.
    International Journal of Medical Informatics, 2022, 165
  • [9] Lifecycle Regulation of Artificial Intelligence- and Machine Learning-Based Software Devices in Medicine
    Hwang, Thomas J.
    Kesselheim, Aaron S.
    Vokinger, Kerstin N.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2019, 322 (23): : 2285 - 2286
  • [10] Reaching the Full Potential of Machine Learning in Mitigating Environmental Impacts of Functional Materials
    Ying He
    Guohong Liu
    Chengjun Li
    Xiliang Yan
    Reviews of Environmental Contamination and Toxicology, 2022, 260