共 2 条
Collapsing supra-massive magnetars: FRBs, the repeating FRB121102 and GRBs
被引:0
|作者:
Patrick Das Gupta
Nidhi Saini
机构:
[1] University of Delhi,Department of Physics and Astrophysics
来源:
关键词:
FRBs;
FRB 121102;
Kerr black holes;
Blandford–Znajek process;
strange stars;
GRBs;
pre-natal kicks;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Fast Radio Bursts (FRBs) last for ∼\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim $$\end{document} few milli-seconds and, hence, are likely to arise from the gravitational collapse of supra-massive, spinning neutron stars after they lose the centrifugal support (Falcke & Rezzolla 2014). In this paper, we provide arguments to show that the repeating burst, FRB 121102, can also be modeled in the collapse framework provided the supra-massive object implodes either into a Kerr black hole surrounded by highly magnetized plasma or into a strange quark star. Since the estimated rates of FRBs and SN Ib/c are comparable, we put forward a common progenitor scenario for FRBs and long GRBs in which only those compact remnants entail prompt γ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma $$\end{document}-emission whose kick velocities are almost aligned or anti-aligned with the stellar spin axes. In such a scenario, emission of detectable gravitational radiation and, possibly, of neutrinos are expected to occur during the SN Ib/c explosion as well as, later, at the time of magnetar implosion.
引用
收藏
相关论文