On the facets of mixed integer programs with two integer variables and two constraints

被引:0
|
作者
Gérard Cornuéjols
François Margot
机构
[1] Carnegie Mellon University,Tepper School of Business
[2] Université de Marseille,LIF, Faculté des Sciences de Luminy
来源
Mathematical Programming | 2009年 / 120卷
关键词
Triangle Inequality; Convex Combination; Integral Point; Corner Point; Reduction Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider an infinite relaxation of the mixed integer linear program with two integer variables, nonnegative continuous variables and two equality constraints, and we give a complete characterization of its facets. We also derive an analogous characterization of the facets of the underlying finite integer program.
引用
收藏
相关论文
共 50 条
  • [1] On the facets of mixed integer programs with two integer variables and two constraints
    Cornuejols, Gerard
    Margot, Francois
    LATIN 2008: THEORETICAL INFORMATICS, 2008, 4957 : 317 - 328
  • [2] On the facets of mixed integer programs with two integer variables and two constraints
    Cornuejols, Gerard
    Margot, Francois
    MATHEMATICAL PROGRAMMING, 2009, 120 (02) : 429 - 456
  • [3] On mixed-integer sets with two integer variables
    Dash, Sanjeeb
    Dey, Santanu S.
    Guenluek, Oktay
    OPERATIONS RESEARCH LETTERS, 2011, 39 (05) : 305 - 309
  • [4] Binary integer programs with two variables per inequality
    Sewell, EC
    MATHEMATICAL PROGRAMMING, 1996, 75 (03) : 467 - 476
  • [5] Binary integer programs with two variables per inequality
    Sewell, E.C.
    Mathematical Programming, Series B, 1996, 75 (03): : 467 - 476
  • [6] TWO-STAGE STOCHASTIC PROGRAMS: INTEGER VARIABLES, DOMINANCE RELATIONS AND PDE CONSTRAINTS
    Schultz, Ruediger
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2012, 2 (04): : 713 - 738
  • [7] REDUNDANT CONSTRAINTS AND EXTRANEOUS VARIABLES IN INTEGER PROGRAMS
    RUBIN, DS
    MANAGEMENT SCIENCE SERIES A-THEORY, 1972, 18 (07): : 423 - 427
  • [8] Efficient algorithms for integer programs with two variables per constraint
    Bar-Yehuda, R
    Rawitz, D
    ALGORITHMICA, 2001, 29 (04) : 595 - 609
  • [9] Two-Step MIR Inequalities for Mixed Integer Programs
    Dash, Sanjeeb
    Goycoolea, Marcos
    Gunluk, Oktay
    INFORMS JOURNAL ON COMPUTING, 2010, 22 (02) : 236 - 249
  • [10] Two-Stage Predict plus Optimize for Mixed Integer Linear Programs with Unknown Parameters in Constraints
    Hu, Xinyi
    Lee, Jasper C. H.
    Lee, Jimmy H. M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,