An embedded automatic license plate recognition system using deep learning

被引:0
|
作者
Diogo M. F. Izidio
Antonyus P. A. Ferreira
Heitor R. Medeiros
Edna N. da S. Barros
机构
[1] Federal University of Pernambuco,
[2] Center For Strategic Technologies of the Northeast,undefined
来源
关键词
Embedded systems; Automatic license plate recognition (ALPR); Image processing; Deep learning; Neural networks;
D O I
暂无
中图分类号
学科分类号
摘要
A system to automatically recognize vehicle license plates is a growing need to improve safety and traffic control, specifically in major urban centers. However, the license plate recognition task is generally computationally intensive, where the entire input image frame is scanned, the found plates are segmented, and character recognition is then performed for each segmented character. This paper presents a methodology for engineering a system to detect and recognize Brazilian license plates using convolutional neural networks (CNN) that is suitable for embedded systems. The resulting system detects license plates in the captured image using Tiny YOLOv3 architecture and identifies its characters using a second convolutional network trained on synthetic images and fine-tuned with real license plate images. The proposed architecture has demonstrated to be robust to angle, lightning, and noise variations while requiring a single forward pass for each network, therefore allowing faster processing compared to other deep learning approaches. Our methodology was validated using real license plate images under different environmental conditions reached a detection rate of 99.37% and an overall recognition rate of 98.43% while showing an average time of 2.70 s to process 1024×768\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1024 \times 768$$\end{document} images with a single license plate in a Raspberry Pi3 (ARM Cortex-A53 CPU). To improve the recognition accuracy, an ensemble of CNN models was tested instead of a single CNN model, which resulted in an increase in the average processing time to 4.88 s for each image while increasing the recognition rate to 99.53%. Finally, we discuss the impact of using an ensemble of CNNs considering the accuracy-performance trade-off when engineering embedded systems for license plate recognition.
引用
收藏
页码:23 / 43
页数:20
相关论文
共 50 条
  • [1] An embedded automatic license plate recognition system using deep learning
    Izidio, Diogo M. F.
    Ferreira, Antonyus P. A.
    Medeiros, Heitor R.
    Barros, Edna N. da S.
    DESIGN AUTOMATION FOR EMBEDDED SYSTEMS, 2020, 24 (01) : 23 - 43
  • [2] An Embedded Automatic License Plate Recognition Syste using Deep Learning
    Izidio, Diogo M. F.
    Ferreira, Antonyus P. A.
    Barros, Edna N. S.
    2018 VIII BRAZILIAN SYMPOSIUM ON COMPUTING SYSTEMS ENGINEERING (SBESC 2018), 2018, : 38 - 45
  • [3] Automatic License Plate Recognition Using Deep Learning
    Dhedhi, Bhavin
    Datar, Prathamesh
    Chiplunkar, Anuj
    Jain, Kashish
    Rangarajan, Amrith
    Kundargi, Jayshree
    ADVANCES IN DATA SCIENCE, 2019, 941 : 46 - 58
  • [4] Deep Learning System for Automatic License Plate Detection and Recognition
    Selmi, Zied
    Ben Halima, Mohamed
    Alimi, Adel M.
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 1132 - 1138
  • [5] Automatic Jordanian License Plate Detection and Recognition System Using Deep Learning Techniques
    Aqaileh, Tharaa
    Alkhateeb, Faisal
    JOURNAL OF IMAGING, 2023, 9 (10)
  • [6] Automatic License Plate Recognition Based on Deep Learning
    Bayram, Fatih
    JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI, 2020, 23 (04): : 955 - 960
  • [7] Using Synthetic Images for Deep Learning Recognition Process on Automatic License Plate Recognition
    Barreto, Saulo Cardoso
    Lambert, Jorge Albuquerque
    Vidal, Flavio de Barros
    PATTERN RECOGNITION, MCPR 2019, 2019, 11524 : 115 - 126
  • [8] Automatic Vehicle License Plate Recognition Using Optimal Deep Learning Model
    Vaiyapuri, Thavavel
    Mohanty, Sachi Nandan
    Sivaram, M.
    Pustokhina, Irina V.
    Pustokhin, Denis A.
    Shankar, K.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02): : 1881 - 1897
  • [9] Automatic Fuzzy License Plate Recognition Based on Deep Learning
    Tang, Xuefeng
    Zhou, Ping
    2ND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING, INFORMATION SCIENCE AND INTERNET TECHNOLOGY, CII 2017, 2017, : 539 - 546
  • [10] License plate segmentation and recognition system using deep learning and OpenVINO
    Castro-Zunti, Riel D.
    Yepez, Juan
    Ko, Seok-Bum
    IET INTELLIGENT TRANSPORT SYSTEMS, 2020, 14 (02) : 119 - 126