The configurational dependence of binding free energies: A Poisson–Boltzmann study of Neuraminidase inhibitors

被引:0
|
作者
Christopher J. Woods
Michael A. King
Jonathan W. Essex
机构
[1] University of Southampton,Department of Chemistry
[2] Celltech Chiroscience plc,undefined
来源
Journal of Computer-Aided Molecular Design | 2001年 / 15卷
关键词
affinity; conformation; ensemble; implicit solvent; snapshot;
D O I
暂无
中图分类号
学科分类号
摘要
The linear finite difference Poisson-Boltzmann (FDPB) equation is applied to the calculation of the electrostatic binding free energies of a group of inhibitors to the Neuraminidase enzyme. An ensemble of enzyme-inhibitor complex conformations was generated using Monte Carlo simulations and the electrostatic binding free energies of subtly different configurations of the enzyme-inhibitor complexes were calculated. It was seen that the binding free energies calculated using FDPB depend strongly on the configuration of the complex taken from the ensemble. This configurational dependence was investigated in detail in the electrostatic hydration free energies of the inhibitors. Differences in hydration energies of up to 7 kcal mol−1 were obtained for root mean square (RMS) structural deviations of only 0.5 Å. To verify the result, the grid size and parameter dependence of the calculated hydration free energies were systematically investigated. This showed that the absolute hydration free energies calculated using the FDPB equation were very sensitive to the values of key parameters, but that the configurational dependence of the free energies was independent of the parameters chosen. Thus just as molecular mechanics energies are very sensitive to configuration, and single-structure values are not typically used to score binding free energies, single FDPB energies should be treated with the same caution.
引用
收藏
页码:129 / 144
页数:15
相关论文
共 50 条