Analyses of thermodynamic performance for the endoreversible Otto cycle with the concepts of entropy generation and entransy

被引:1
|
作者
YanQiu Wu
机构
[1] Chongqing Three Gorges University,College of Mathematics & Statistics
来源
关键词
entropy generation minimization; entransy; finite time thermodynamics; endoreversible Otto cycle; applied mathematics;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the endoreversible Otto cycle is analyzed with the entropy generation minimization and the entransy theory. The output power and the heat-work conversion efficiency are taken as the optimization objectives, and the relationships of the output power, the heat-work conversion efficiency, the entropy generation rate, the entropy generation numbers, the entransy loss rate, the entransy loss coefficient, the entransy dissipation rate and the entransy variation rate associated with work are discussed. The applicability of the entropy generation minimization and the entransy theory to the analyses is also analyzed. It is found that smaller entropy generation rate does not always lead to larger output power, while smaller entropy generation numbers do not always lead to larger heat-work conversion efficiency, either. In our calculations, both larger entransy loss rate and larger entransy variation rate associated with work correspond to larger output power, while larger entransy loss coefficient results in larger heat-work conversion efficiency. It is also found that the concept of entransy dissipation is not always suitable for the analyses because it was developed for heat transfer.
引用
收藏
页码:692 / 700
页数:8
相关论文
共 50 条