Fine-grained affect detection in learners’ generated content using machine learning

被引:0
|
作者
Emmanuel Awuni Kolog
Samuel Nii Odoi Devine
Kwame Ansong-Gyimah
Richard Osei Agjei
机构
[1] University of Ghana Business School,Department of Operations and Management Information Systems
[2] Presbyterian University College,Department of Information and Communication Technology
[3] University of Education-Winneba,Department of Information Technology Education
[4] University of Central Nicaragua,School of Public Health
来源
关键词
Emotion detection; Counselling; Machine learning; Text classification;
D O I
暂无
中图分类号
学科分类号
摘要
Learners’ adaptation to academic trajectory is shaped by several influencing factors that ought to be considered while attempting to design an intervention towards improving academic performance. Emotion is one factor that influences students’ academic orientation and performance. Tracking emotions in text by psychologists have long been a subject of concern to researchers. This is due to the challenges associated with determining the level of accuracy and consistency of decisions made from analysing such text by psychologists. Lately, Artificial Intelligence has complemented human efforts in tracking emotions in text. This paper provides an overview of machine learning application for detecting emotions in text through a Support vector machine learning system. In addition, we compared the performance of the system’s classifier to WEKA’s Multinomial Naïve-Bayes and J48 decision tree classifiers. Real time data from using the system in counselling delivery and collected students’ life stories were used for evaluating the performance of the classifiers. The evaluation results show that the Support vector machine, implemented in our system, is superior over WEKA’s Multinomial Naïve-Bayes and J48 decision tree classifiers. Nevertheless, the various classifiers performed beyond the acceptable threshold. The implication for the findings goes to indicate that machine learning algorithms can be implemented to track emotions in text, especially from students generated content.
引用
收藏
页码:3767 / 3783
页数:16
相关论文
共 50 条
  • [1] Fine-grained affect detection in learners' generated content using machine learning
    Kolog, Emmanuel Awuni
    Devine, Samuel Nii Odoi
    Ansong-Gyimah, Kwame
    Agjei, Richard Osei
    EDUCATION AND INFORMATION TECHNOLOGIES, 2019, 24 (06) : 3767 - 3783
  • [2] Towards Fine-Grained Recognition: Joint Learning for Object Detection and Fine-Grained Classification
    Wang, Qiaosong
    Rasmussen, Christopher
    ADVANCES IN VISUAL COMPUTING, ISVC 2019, PT II, 2019, 11845 : 332 - 344
  • [3] Representation Learning for Fine-Grained Change Detection
    O'Mahony, Niall
    Campbell, Sean
    Krpalkova, Lenka
    Carvalho, Anderson
    Walsh, Joseph
    Riordan, Daniel
    SENSORS, 2021, 21 (13)
  • [4] Diagnosing Machine Learning Pipelines with Fine-grained Lineage
    Zhang, Zhao
    Sparks, Evan R.
    Franklin, Michael J.
    HPDC'17: PROCEEDINGS OF THE 26TH INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, 2017, : 143 - 153
  • [5] Machine Learning for Fine-Grained Hardware Prefetcher Control
    Hiebel, Jason
    Brown, Laura E.
    Wang, Zhenlin
    PROCEEDINGS OF THE 48TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP 2019), 2019,
  • [6] Fine-Grained Accelerators for Sparse Machine Learning Workloads
    Mishra, Asit K.
    Nurvitadhi, Eriko
    Venkatesh, Ganesh
    Pearce, Jonathan
    Marr, Debbie
    2017 22ND ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2017, : 635 - 640
  • [7] Fine-Grained Object Detection Using Transfer Learning and Data Augmentation
    Dalal, Rahul
    Moh, Teng-Sheng
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2018, : 893 - 896
  • [8] Fine-grained assessment of greenspace satisfaction at regional scale using content analysis of social media and machine learning
    Wang, Zhifang
    Zhu, Zhongwei
    Xu, Min
    Qureshi, Salman
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 776
  • [9] On the Predictability of Fine-grained Cellular Network Throughput using Machine Learning Models
    Basit, Omar
    Phuc Dinh
    Khan, Imran
    Kong, Jonny
    Hu, Y. Charlie
    Koutsonikolas, Dimitrios
    Lee, Myungjin
    Liu, Chaoyue
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 47 - 56
  • [10] Arabic Fine-Grained Opinion Categorization Using Discriminative Machine Learning Technique
    Touati, Imen
    Graja, Marwa
    Ellouze, Mariem
    Belguith, Lamia Hadrich
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2016, 2017, 533 : 104 - 113