Univalence criterion and quasiconformal extension of holomorphic mappings

被引:0
|
作者
Hidetaka Hamada
Gabriela Kohr
机构
[1] Kyushu Sangyo University,Faculty of Engineering
[2] Babeş-Bolyai University,Faculty of Mathematics and Computer Science
来源
Manuscripta Mathematica | 2013年 / 141卷
关键词
32H02; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we are concerned with solutions, in particular with the univalent solutions, of the Loewner differential equation associated with non-normalized subordination chains on the Euclidean unit ball B in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^n}$$\end{document}. We also give applications to univalence conditions and quasiconformal extensions to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^n}$$\end{document} of holomorphic mappings on B. Finally we consider the asymptotical case of these results. The results in this paper are complete generalizations to higher dimensions of well known results due to Becker. They improve and extend previous sufficient conditions for univalence and quasiconformal extension to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{C}^n}$$\end{document} of holomorphic mappings on B.
引用
收藏
页码:195 / 209
页数:14
相关论文
共 50 条