Integrability of left-invariant sub-Riemannian structures on the special linear group SL2(R)

被引:0
|
作者
A. P. Mashtakov
Yu. L. Sachkov
机构
[1] Russian Academy of Sciences,Program Systems Institute
来源
Differential Equations | 2014年 / 50卷
关键词
Cotangent Bundle; Carnot Group; Pontryagin Maximum Principle; Liouville Integrability; Mathematical Pendulum;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the Hamiltonian system of ordinary differential equations of the Pontryagin maximum principle for left-invariant sub-Riemannian structures of elliptic type on the Lie group SL2(ℝ) is Liouville integrable.
引用
收藏
页码:1541 / 1547
页数:6
相关论文
共 32 条
  • [1] Integrability of left-invariant sub-Riemannian structures on the special linear group SL 2(R)
    Mashtakov, A. P.
    Sachkov, Yu L.
    DIFFERENTIAL EQUATIONS, 2014, 50 (11) : 1541 - 1547
  • [2] LEFT-INVARIANT SUB-RIEMANNIAN ENGEL STRUCTURES: ABNORMAL GEODESICS AND INTEGRABILITY
    Beschastnyi, Ivan
    Medvedev, Alexandr
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (05) : 3524 - 3537
  • [3] Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups
    A. P. Mashtakov
    Yu. L. Sachkov
    Differential Equations, 2015, 51 : 1476 - 1483
  • [4] Superintegrability of left-invariant sub-Riemannian structures on unimodular three-dimensional Lie groups
    Mashtakov, A. P.
    Sachkov, Yu. L.
    DIFFERENTIAL EQUATIONS, 2015, 51 (11) : 1476 - 1483
  • [5] On the behavior of geodesics of left-invariant sub-Riemannian metrics on the group Aff0(R) x Aff0(R)
    Nikonorov, Yurii G.
    Zubareva, Irina A.
    ELECTRONIC RESEARCH ARCHIVE, 2025, 33 (01): : 181 - 209
  • [6] On Integrability of Certain Rank 2 Sub-Riemannian Structures
    Kruglikov, Boris S.
    Vollmer, Andreas
    Lukes-Gerakopoulos, Georgios
    REGULAR & CHAOTIC DYNAMICS, 2017, 22 (05): : 502 - 519
  • [7] On integrability of certain rank 2 sub-Riemannian structures
    Boris S. Kruglikov
    Andreas Vollmer
    Georgios Lukes-Gerakopoulos
    Regular and Chaotic Dynamics, 2017, 22 : 502 - 519
  • [8] Sub-Riemannian distance on the Lie group SL(2)
    V. N. Berestovskiĭ
    I. A. Zubareva
    Siberian Mathematical Journal, 2017, 58 : 16 - 27
  • [9] SUB-RIEMANNIAN DISTANCE ON THE LIE GROUP SL(2)
    Berestovskii, V. N.
    Zubareva, I. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2017, 58 (01) : 16 - 27
  • [10] The normal sub-Riemannian geodesic flow on E(2) generated by a left-invariant metric and a right-invariant distribution
    Mazhitova, A. D.
    SIBERIAN MATHEMATICAL JOURNAL, 2014, 55 (05) : 948 - 953