A high resolution numerical scheme for a high speed gas-liquid two-phase flow

被引:0
|
作者
Byeong Rog Shin
机构
[1] Changwon National University,Department of Mechanical Engineering
关键词
Gas-liquid two-phase flow; Homogeneous model; MUSCL TVD scheme; Density based method; Equation of state; Riemann problem; Void fraction;
D O I
暂无
中图分类号
学科分类号
摘要
A high resolution numerical method for solving high speed gas-liquid two-phase flow is proposed and applied to the two-phase shock tube problem. The present method employs a finite-difference 4th-order Runge-Kutta method and Roe’s flux difference splitting approximation with the MUSCL TVD scheme. A homogeneous equilibrium gas-liquid two-phase model that takes account of the compressibility of mixed media is used. Therefore, the present density-based numerical method permits simple treatment of the whole gasliquid two-phase flow field, including wave propagation, large density changes and incompressible flow characteristics at the low Mach number. The speed of sound of above two-phase media has been derived on the basis of thermodynamic relations. By this method, a Riemann problem for the Euler equations of a one-dimensional shock tube was computed. Numerical results such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media at thermal and isothermal conditions, and some features related to computational efficiency are made. Comparisons of predicted results with exact solutions are provided and discussed.
引用
收藏
页码:1373 / 1379
页数:6
相关论文
共 50 条
  • [1] A high resolution numerical scheme for a high speed gas-liquid two-phase flow
    Shin, Byeong Rog
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2011, 25 (05) : 1373 - 1379
  • [2] Numerical Simulations for Gas-Liquid Two-Phase Flow
    Matsumoto, Junichi
    Takada, Naoki
    JOURNAL OF JAPANESE SOCIETY OF TRIBOLOGISTS, 2010, 55 (06) : 387 - 393
  • [3] Numerical simulations for gas-liquid two-phase flow
    Matsumoto, Junichi
    Takada, Naoki
    Toraibarojisuto/Journal of Japanese Society of Tribologists, 2010, 55 (06): : 387 - 393
  • [4] Characteristics of gas-liquid two-phase flow at high temperature and high pressure in the pipeline
    Hu Z.-X.
    Lian S.-J.
    Li Q.-F.
    Ma X.-H.
    Hao T.-T.
    Lan Z.
    Gao Xiao Hua Xue Gong Cheng Xue Bao/Journal of Chemical Engineering of Chinese Universities, 2022, 36 (01): : 36 - 45
  • [5] Propagation speed of pressure wave in gas-liquid two-phase flow
    Liu, Lei
    Wang, Yaoshe
    Zhou, Fangde
    Ying Yong Li Xue Xue Bao/Chinese Journal of Applied Mechanics, 1999, 16 (03): : 22 - 27
  • [6] Numerical simulation of gas-liquid two-phase flow in gas lift system
    Zuo Juan-Li
    Yang Hong
    Wei Bing-Qian
    Hou Jing-Ming
    Zhang Kai
    ACTA PHYSICA SINICA, 2020, 69 (06)
  • [7] Numerical Simulation on the Flow Pattern of a Gas-Liquid Two-Phase Swirl Flow
    Rao, Yongchao
    Liu, Zehui
    Wang, Shuli
    Li, Lijun
    ACS OMEGA, 2022, 7 (03): : 2679 - 2689
  • [8] Numerical Investigations of Gas-Liquid Two-Phase Flow in a Pump Inducer
    Mansour, Michael
    Parikh, Trupen
    Engel, Sebastian
    Thevenin, Dominique
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (02):
  • [9] Numerical simulations and experiments of gas-liquid two-phase flow in an inducer
    Cui, Baoling
    Li, Yifan
    Wang, Pei
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2021, 43 (11)
  • [10] NUMERICAL MODELLING OF HOMOGENEOUS TWO-PHASE GAS-LIQUID FLOW IN A PIPE
    Yale, Ibrahim D.
    Amin, Norsarahaida
    JURNAL TEKNOLOGI, 2015, 77 (13): : 75 - 80