An analytical method for derivation of the Steiner Ratio of 3D euclidean Steiner trees

被引:0
|
作者
R. P. Mondaini
机构
[1] Federal University of Rio de Janeiro,
[2] UFRJ – COPPE – Centre of Technology,undefined
来源
关键词
Steiner ratio; Analytical method; Euclidean Steiner trees;
D O I
暂无
中图分类号
学科分类号
摘要
We stress the convenience of some analytical methods which have been introduced recently [Mondaini, R. P.: In: Nonconvex Optimization and its Applications series, pp. 373–390. Kluwer Acad. (2003); Mondaini, R. P.: In: BIOMAT 2005, International Symposium on Mathematical and Computational Biology, pp. 327–342. World Scientific Co Ltd (2006)] for calculating the Steiner Ratio of finite sets of points in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^3$$\end{document} . These methods are good enough at reproducing the results obtained by reduction of the search space of numerical algorithms and can be easily extended to any number of dimensions.
引用
收藏
页码:459 / 470
页数:11
相关论文
共 50 条
  • [1] An analytical method for derivation of the Steiner Ratio of 3D euclidean Steiner trees
    Mondaini, R. P.
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (2-3) : 459 - 470
  • [2] Approximate Euclidean Steiner Trees
    Charl Ras
    Konrad Swanepoel
    Doreen Anne Thomas
    Journal of Optimization Theory and Applications, 2017, 172 : 845 - 873
  • [3] Approximate Euclidean Steiner Trees
    Ras, Charl
    Swanepoel, Konrad
    Thomas, Doreen Anne
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 172 (03) : 845 - 873
  • [4] Integrality ratio for Group Steiner Trees and Directed Steiner Trees
    Halperin, E
    Kortsarz, G
    Krauthgamer, R
    Srinivasan, A
    Nan, W
    PROCEEDINGS OF THE FOURTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2003, : 275 - 284
  • [5] INTEGRALITY RATIO FOR GROUP STEINER TREES AND DIRECTED STEINER TREES
    Halperin, Eran
    Kortsarz, Guy
    Krauthgamer, Robert
    Srinivasan, Aravind
    Wang, Nan
    SIAM JOURNAL ON COMPUTING, 2007, 36 (05) : 1494 - 1511
  • [6] ONLINE STEINER TREES IN THE EUCLIDEAN PLANE
    ALON, N
    AZAR, Y
    DISCRETE & COMPUTATIONAL GEOMETRY, 1993, 10 (02) : 113 - 121
  • [7] EUCLIDEAN STEINER MINIMAL-TREES WITH OBSTACLES AND STEINER VISIBILITY GRAPHS
    WINTER, P
    DISCRETE APPLIED MATHEMATICS, 1993, 47 (02) : 187 - 206
  • [8] Approximation of Steiner Minimum Trees in Euclidean Planar Graphs Using Euclidian Steiner Minimum Trees
    Zenker, Bjoern
    20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 931 - 932
  • [9] Geometric conditions for Euclidean Steiner trees in Rd
    Van Laarhoven, Jon W.
    Anstreicher, Kurt M.
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (05): : 520 - 531
  • [10] Grade of service Euclidean Steiner minimum trees
    Xue, Guoliang
    Lin, Guo-Hui
    Du, Ding-Zhu
    Proceedings - IEEE International Symposium on Circuits and Systems, 1999, 6