Modal analysis of the dynamic crack growth and arrest in a DCB specimen

被引:0
|
作者
Radhi Abdelmoula
Gilles Debruyne
机构
[1] LSPM,
[2] Paris XIII University,undefined
[3] LaMSID-EDF-CEA,undefined
来源
关键词
Dynamic crack growth; Crack arrest; Peeling test; Double cantilever beam; Energy balance;
D O I
暂无
中图分类号
学科分类号
摘要
This paper discusses dynamic crack growth and arrest in an elastic double cantilever beam (DCB) specimen, simulated using the Bernoulli–Euler beam theory. The specimen is made from two different materials. The section of interest, where the dynamic crack growth takes place, is made from a material, the fracture energy of which will be denoted 2Γ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\Gamma _1 $$\end{document}. The initial crack grows slowly in a starter material with a fracture energy 2Γ0(Γ0>Γ1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\Gamma _{0} \;(\Gamma _{0} >\Gamma _1 )$$\end{document}, while opposed displacements on both arms of the specimen are continuously increased. As the crack reaches the material interface at ℓ=ℓc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =\ell _c $$\end{document}, the loading displacement is instantly suspended, and the crack suddenly propagates through the test zone, until it stops at ℓ=ℓA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell =\ell _A $$\end{document}. During this process, the energy 2Γ1(ℓA-ℓc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\Gamma _1 (\ell _A -\ell _c )$$\end{document} is dissipated. The beam motion and the fracture process during the fast crack growth stage are investigated, based on the balance energy associated to the Griffith criterion. The motion equations are approximated using a modal decomposition up to order N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} of the beam deflection (the analysis has been performed up to N=10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=10$$\end{document} but in most cases N=5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=5$$\end{document} is sufficient to obtain an accurate solution). This process leads to a set of N second order differential equations whose unknowns are the mode amplitudes and their derivatives, and another equation the unknowns of which are the current crack length ℓ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell (t)$$\end{document}, velocity ℓ˙(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\dot{\ell }(t)$$\end{document} and acceleration ℓ¨(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\ell }(t)$$\end{document}. To demonstrate the accuracy of this method, it is first tested on a one dimensional peeling stretched film problem, with an insignificant bending energy. An exact solution exists, accurately approximated by the modal solution. The method is then applied to the DCB specimen described above. Despite the rather crude nature of the Bernoulli–Euler model, the results crack kinematics, and specially the arrest length, correspond well to those obtained by the combined use of finite elements and cohesive zone models, even for a few modes. Moreover, for the basic mode N=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=0$$\end{document} (also referred to as Mott solution), even if the crack kinematics is not accurately reproduced, the prediction of the crack arrest length remains correct for moderate ratios. Some parametric studies about the beam geometry and the initial crack velocity are performed. The relative crack arrest ℓA/ℓc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _A /\ell _c $$\end{document} appears to be almost insensitive to these parameters, and is mainly governed by the ratio R=Γ0/Γ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=\Gamma _{0} /\Gamma _1 $$\end{document} which is the key parameter to predict the crack arrest.
引用
收藏
页码:187 / 202
页数:15
相关论文
共 50 条
  • [1] Modal analysis of the dynamic crack growth and arrest in a DCB specimen
    Abdelmoula, Radhi
    Debruyne, Gilles
    INTERNATIONAL JOURNAL OF FRACTURE, 2014, 188 (02) : 187 - 202
  • [2] DYNAMIC ANALYSIS OF UNSTABLE CRACK-PROPAGATION AND ARREST IN DCB TEST SPECIMEN
    KANNINEN, MF
    INTERNATIONAL JOURNAL OF FRACTURE, 1974, 10 (03) : 415 - 430
  • [3] SPECIMEN SIZE EFFECTS ON DYNAMIC CRACK-PROPAGATION AND ARREST IN DCB SPECIMENS
    NISHIOKA, T
    MURAKAMI, T
    UCHIYAMA, H
    SAKAKURA, K
    ENGINEERING FRACTURE MECHANICS, 1991, 39 (04) : 757 - 767
  • [4] DYNAMIC ANALYSIS OF CRACK PROPAGATION IN THE DCB TEST SPECIMEN.
    Kanninen, M.F.
    Ship Structure Committee (Report) SSC (United States), 1973, : 55 - 76
  • [5] DYNAMIC ANALYSIS OF A CRACK-ARREST SPECIMEN
    STAMM, H
    BASS, BR
    PUGH, CE
    NUCLEAR ENGINEERING AND DESIGN, 1986, 96 (2-3) : 255 - 268
  • [6] RAPID CRACK-PROPAGATION AND ARREST IN THE DCB SPECIMEN - AN IMPROVED NUMERICAL-ANALYSIS
    PERL, M
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1982, 18 (11) : 1719 - 1732
  • [7] DYNAMIC ANALYSIS OF A CRACK-ARREST SPECIMEN.
    Stamm, H.
    Bass, B.R.
    Pugh, C.E.
    Nuclear Engineering and Design, 1985, 96 (2-3) : 255 - 268
  • [8] Dynamic crack growth and crack arrest law based on arc bottom specimen
    Lang L.
    Zhu Z.
    Deng S.
    Niu C.
    Wan D.
    Wang L.
    Baozha Yu Chongji/Explosion and Shock Waves, 2020, 40 (09):
  • [9] Controlled crack growth in ceramics: The DCB specimen loaded with pure moments
    Sorensen, BF
    Brethe, P
    SkovHansen, P
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1996, 16 (09) : 1021 - 1025
  • [10] 2 DIMENSIONAL ANALYSIS OF CRACK-PROPAGATION AND ARREST IN DCB
    SHMUELY, M
    INTERNATIONAL JOURNAL OF FRACTURE, 1974, 10 (04) : 596 - 598