The n-queens completion problem

被引:0
|
作者
Stefan Glock
David Munhá Correia
Benny Sudakov
机构
[1] Institute for Theoretical Studies,
[2] ETH,undefined
[3] Department of Mathematics,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An n-queens configuration is a placement of n mutually non-attacking queens on an n×n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\times n$$\end{document} chessboard. The n-queens completion problem, introduced by Nauck in 1850, is to decide whether a given partial configuration can be completed to an n-queens configuration. In this paper, we study an extremal aspect of this question, namely: how small must a partial configuration be so that a completion is always possible? We show that any placement of at most n/60 mutually non-attacking queens can be completed. We also provide partial configurations of roughly n/4 queens that cannot be completed and formulate a number of interesting problems. Our proofs connect the queens problem to rainbow matchings in bipartite graphs and use probabilistic arguments together with linear programming duality.
引用
收藏
相关论文
共 50 条
  • [1] The n-queens completion problem
    Glock, Stefan
    Munha Correia, David
    Sudakov, Benny
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)
  • [2] Complexity of n-Queens Completion
    Gent, Ian P.
    Jefferson, Christopher
    Nightingale, Peter
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2017, 59 : 815 - 848
  • [3] THE N-QUEENS PROBLEM
    RIVIN, I
    VARDI, I
    ZIMMERMANN, P
    AMERICAN MATHEMATICAL MONTHLY, 1994, 101 (07): : 629 - 639
  • [4] N-QUEENS PROBLEM
    BRUEN, A
    DIXON, R
    DISCRETE MATHEMATICS, 1975, 12 (04) : 393 - 395
  • [5] Complexity of n-Queens Completion (Extended Abstract)
    Gent, Ian P.
    Jefferson, Christopher
    Nightingale, Peter
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 5608 - 5611
  • [6] TOROIDAL N-QUEENS PROBLEM
    GOLDSTEIN, RZ
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (04): : 309 - 310
  • [7] A Lower Bound for the n-queens Problem
    Simkin, Michael
    Luria, Zur
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2185 - 2197
  • [8] A SIMPLIFIED SOLUTION OF THE N-QUEENS PROBLEM
    REICHLING, M
    INFORMATION PROCESSING LETTERS, 1987, 25 (04) : 253 - 255
  • [9] The n-queens problem in higher dimensions
    Barr, Jeremiah
    Rao, Shrisha
    ELEMENTE DER MATHEMATIK, 2006, 61 (04) : 133 - 137
  • [10] New Constructions for the n-Queens Problem
    M. Bača
    S. C. López
    F. A. Muntaner-Batle
    A. Semaničová-Feňovčíková
    Results in Mathematics, 2020, 75